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Introduction

In standard QED, we use the Dirac equation with a bispinor wave function to describe fermion 

states. The Dirac equation has solutions with positive and negative energies. The physical 

vacuum of the Dirac equation is described in the language of completely occupied states with 

the negative energies (Dirac sea). The holes in the Dirac sea are interpreted as availability of 

antiparticles. In the Stükelberg-Feynman theory, positrons are electrons with the negative 

energies moving in the reverse direction in space-time. The QED fermion vacuum is non-

empty, virtual creation and annihilation of particles and antiparticles is theoretically assumed 

therein.
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Introduction

The motion of fermions in quantum theory can be described by equations with spinor wave 

functions. Earlier, we have examined the two possibilities: the Foldy-Wouthuysen (FW) 

representation and the representation with Klein-Gordon-type equation for fermions (KG). For 

these representations, the (QED)FW and (QED)KG formalisms were developed and some physical 

effects were calculated.

In the lowest order of the perturbation theory, the cross-sections of the Column scattering of an 

electron, electron scattering on a proton, the Compton effect and annihilation of an electron-

positron pair were calculated. The electron’s self-energy, self-energy of photon, anomalous 

magnetic moment of electron, the Lamb shift of atomic energy levels were calculated. The final 

results completely coincide with the appropriate results in the standard QED with the Dirac 

equation.
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Introduction

As against the standard QED, the following is new in (QED)FW and (QED)KG : 

 When calculating physical effects, it is suffice to use solutions with positive energies of 

fermions. It refers both to real and virtual intermediate fermion states. 

 We use two separate equations for electrons and positrons. These equations differ from 

each other by the sign of the electric charge and the signs in front of  summands with 

masses of an electron and a positron. 

 In analogy with the vacuum of the Schrödinger equation, the fermion vacuum is empty. In 

this case, existence of the sea of solutions with negative energies (Dirac sea), processes of 

the virtual creation and annihilation of electron-positron pairs, the concept of vacuum 

polarization become excessive. In the future, this conclusion can be verified experimentally 

either in case of the successful development of exawatt-power optical lasers or in the 

experiments with collisions of heavy ions with the total Z > 170175.
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Introduction

The aim of our effort:

We present a necessity of correction of the standard QED with the Dirac equation and with the 

bispinor wave function in view of (QED)FW and (QED)KG versions. When calculating physical 

effects in the updated QED theory, we will use only solutions of the Dirac free equation with 

positive energies. It refers both to real and virtual intermediate fermion states. We will use two 

separate equations for electrons and positrons. These equations differ from each other by the 

sign of the electric charge and the signs in front of summands with masses of an electron and 

a positron.



In the standard QED, the Dirac equation with the bispinor wave function is used. The Dirac 

equation for an electron with mass m and electrical charge e<0, interacting with an 

electromagnetic field  , can be written as:

where is the Dirac Hamiltonian;     

are electromagnetic potentials;

are four-dimensional Dirac matrixes,  

The bispinor
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On QED formalism
In the free case (without interaction), Dirac equation has the following normalized solutions with 

positive and negative energies

Here, are two-dimensional Pauli matrixes.

Solutions were obtained by using matrixes in the Dirac-Pauli representation. The similar 

solutions can be obtained with Dirac matrixes in the spinor representation, widely used in the 

Standard model. QED with spinor equations for fermions and with the spinor representation of Dirac 

matrixes is represented in paper [1] for (QED)FW and in paper [2] for (QED)KG. The final results in 

papers [1] and [2] coincide with the results of the standard QED and with the results in paper [3] 

obtained by using matrixes   in the Dirac-Pauli representation.
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[1] V. P. Neznamov, Part. Nucl. 43, 36 (2012), arxiv: 1107.0693 (physics. gen-ph), [2] L. S. Нostler, J. Math. Phys. 26, 1348 (1985).

[3] V. P. Neznamov, Part. Nucl. 37, 86 (2006), arxiv: hep-th/0411050; V. P. Neznamov and V. E. Shemarulin, Int. J. Mod. Phys. A 36, 

2150086 (2021).
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QED in the Foldy-Wouthuysen representation
In the FW-representation, the Dirac equation for an electron, interacting with an electromagnetic field  

can be obtained in the form of  series in the electromagnetic coupling constant by applying a 

sequence of unitary transformations

Here

As the result, we obtain the equation of

Here, designation +m points to the use of the positive sign in front of m in the Dirac equation. In the 

equation there are not summands with the negative sign in front of a mass m. It is follows from the 

structure of expressions                        In the free case
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QED in the Foldy-Wouthuysen representation

In the FW-representation, Dirac equation has a noncovariant form and a Hamiltonian is 

nonlocal. In this case, in the quantum field theory, it is difficult to use standard methods of secondary 

quantization. However, we can use the S-matrix approach and the Feynman method of the 

propagation function. In this method, QED processes are described by integral equations.

Equation for four-dimensional x, y can be written as

where is the interaction Hamiltonian; is the Feynman propagator 

in the Foldy-Wouthuysen (FW) representation

The elements of the  S-matrix can be written as
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QED in the Foldy-Wouthuysen representation
Let us note a number of essential points:

 Hamiltonians and are diagonal relative to mixing of upper and lower components of 

a bispinor . Each of the Dirac equations includes two independent equations with spinor wave 

functions . One of the equations describes states with positive energies, the second equation 

– the states with negative energies. S-matrix elements can be calculated taking into account only 

the states with positive energies. In this case, the states with negative energies are not used in the 

calculations of the QED physical processes. They are needed just for the mathematical 

completeness in expansions of operators and wave functions.

 The essential peculiarity of the theory in the case when four-momenta of external fermion lines lie 

on a mass surface  is the compensation for the contribution of the diagrams with 

fermion propagators and the contribution of the corresponding summands in propagator-free 

diagrams determined by formula (12) [1]. 
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[1] V. P. Neznamov, Part. Nucl. 37, 86 (2006), arxiv: hep-th/0411050.



 In the standard QED with the Dirac equation, positrons are electrons with negative energies 

moving in the reverse direction in space-time. In the Foldy-Wouthuysen representation, the 

situations changes. If in the equation for the S-matrix elements, on the left, we use 

and, on the right, we use then, due to the structure of bispinors and due to evenness 

of an interaction Hamiltonian in all the orders of the perturbation theory we will obtain zero 

values of the corresponding elements of the S-matrix. 
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QED in the Foldy-Wouthuysen representation
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even operator by definition

So, the positrons in FW-representation cannot be described by electron states with negative 

energies. The positrons in the FW-representation should be described by the states with positive 

energies of the special equation for positrons.
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QED in the Foldy-Wouthuysen representation

 To describe physical processes in (QED)FW with participation of real antiparticles, it was found 

out  that in the initial Dirac equations, particle and antiparticle masses should have opposite 

signs. It is connected with our nonuse in theory the states with negative energies.
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QED in the Foldy-Wouthuysen representation

 The Dirac equation for positrons has the form of

Here is a complex conjugate bispinor.

This equation differs from Dirac equation by signs of charge and summand with m. 

In the FW-representation the equation has the form of

Here there are not the summands with the positive sign before the mass m.

In paper [1] without the use of states with negative energies of fermions, the (QED)FW formalism is 

developed and some physical effects were calculated. The final results of the calculations coincide 

with the results in the standard QED.
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[1] V. P. Neznamov, Part. Nucl. 37, 86 (2006), arxiv: hep-th/0411050.
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(QED)KG with the Klein-Gordon-type equation for fermions

[1] V. P. Neznamov, I. I. Safronov, J. Exp. Theor. Phys. 128, 672 (2019), arxiv: 1907.03579 (physics. gen-ph, hep-th).

[2] V. P. Neznamov, Int. J. Mod. Phys. A, 2150173 (2021), arxiv: 2110.03530 (physics. gen-ph).

Self-conjugate equations for electrons and positrons with spinor wave functions were obtained in 

papers [1], [2]. These equations have the form of

In equations we can perform expansion as a series in a charge e

Here, the upper signs in front of the charge and mass correspond to equation for an electron, the 

lower signs correspond to equation for a positron,                           

where 

The algorithm for determining an interaction operator is provided in paper [2].
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(QED)KG with the Klein-Gordon-type equation for fermions

In the free case, the self-conjugated equations for electrons and positrons become the Klein-Gordon 

equations with spinor wave functions

The orthonormal solutions of these equations have the form of 

In the paper [1], the (QED)KG formalism was developed and some physical effects were calculated. 

As well as in the FW-representation, the final computational results coincide with the results in the 

standard QED.

In (QED)KG, real and virtual states with negative energies of self-conjugated equations for electrons 

and positrons are not used either. In the equations, the masses of particles and antiparticles have 

opposite signs.

[1] V. P. Neznamov, Int. J. Mod. Phys. A, 2150173 (2021), arxiv: 2110.03530 (physics. gen-ph).
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Standard QED without the Dirac sea and with opposite signs before 
particle and antiparticle masses

In standard QED, we use the Dirac equation with a bispinor wave function. 

In this section, we answer the question: is it possible to develop the QED formalism with the 

Dirac equation with the opposite signs of charges and masses for particles and antiparticles and 

with the use of only positive energies for real and virtual fermion states? 

As is known, the unitary transformations of the Hamiltonians and wave functions in the quantum 

theory preserve all physical characteristics of considered objects of researches. But at transition 

from the Dirac representation to the Foldy-Wouthuysen representation, we encounter with other 

physical picture.
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Standard QED without the Dirac sea and with opposite signs before 
particle and antiparticle masses

In the Dirac representation in the quantum theory there is a connection between the solutions 

with positive and negative energies of fermions. In the Foldy-Wouthuysen representation, there 

is not such kind of connection.

Оbviously, in the Dirac representation there is an unnecessary nonphysical information that 

used in the formalism of the standard QED. This information is connected with the negative 

energies of fermions. For recovery of parity with the Foldy-Wouthuysen representation, we must 

refuse to use the solutions with the negative energies of fermions in the standard QED. The 

solutions with the negative energies are necessary only for mathematical completeness in 

expansions of operators and wave functions.
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Standard QED without the Dirac sea and with opposite signs before 
particle and antiparticle masses

So, in the updated QED with the Dirac equation and bispinor function, we will use two individual  

equations for electrons and positrons. These equations differ from each other by the sign of the 

electric charge and the signs in front of  summands with masses of an electron and a positron.

The second change of the Feynman rules is the use of two individual retarded propagators for 

virtual electrons and positrons. In calculating with the retarded Green functions, it should take 

into account only positively frequency poles.
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Standard QED without the Dirac sea and with opposite signs before 
particle and antiparticle masses

As a result in updated QED, when calculating physical effects, it is suffice to use solutions with 

positive energies of fermions. It refers both to real and virtual intermediate fermion states.

In updated QED, the fermion vacuum is empty. In a theory, the processes of virtual creation and 

annihilation of particles and antiparticles are absent .

The results of calculated electrodynamics phenomena in updated QED coincides with the results  

in standard (QED) and also in (QED)FW and (QED)KG versions.
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Possibilities of experimental verifications of fermion vacuum in QED

In standard QED, the fermion vacuum is non-empty. The processes of creation and annihilation 

of virtual electron-positron pairs are present therein. In intense electromagnetic fields, the 

vacuum creation of real electron-positron pairs is possible. The well-known example thereof is 

the Schwinger effect: vacuum creation of real pairs in the strong uniform electrical field.

In QED variants without the use of fermion states with negative energies, the fermion vacuum is 

empty. The possibility of vacuum creation of real and virtual pairs is absent therein.

The direct answer to the question about the content of the fermion vacuum is experimental 

confirmation of existence (or absence) of the Schwinger effect. The intensity of the critical 

Schwinger field is ~51029 W/сm2.
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Possibilities of experimental verifications of fermion vacuum in QED

To achieve such an intensity, two possibilities are available:

 Development of exawatt-power optical lasers (see, for instance, the XCELS-project). At the 

XCELS facility, the achievement of ~1024  1025 W/сm2 intensity of a laser field is anticipated. 

The calculations were shown that at the use of a single focused laser pulse, the necessary 

critical field for production of electron-positron pairs decreases up to I = 1028 W/сm2. At 

collisions of two and more focused laser pulses, the threshold critical field decreases up to 

I = 1025  1026 W/сm2.
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Possibilities of experimental verifications of fermion vacuum in QED

 Experiments with collisions of heavy ions with the total Z>170 175. Such experiments were 

carried out at the GSI facility (Darmstadt, Germany) and Argonne national laboratory (USA) 

in 1970-ies–1980-ies. However, they did not lead to the unambiguous conclusion about the 

possibility of vacuum creation of pairs in super-critical fields. New experiments devoted to 

this subject can be carried out in the FAIR (Darmstadt, Germany), HIAF (China), NICA 

(Dubna, Russia) acceleration centers currently under construction.
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Conclusions

In the report, three QED versions with opposite signs of particle and antiparticle masses in Dirac equations 

and with empty fermion vacuum without the sea of negative energies are considered. The first version is 

(QED)FW in the Foldy-Wouthuysen representation. The second version is (QED)KG with equations for  

Klein-Gordon-type fermions. The third version is the updated standard QED.

In all the versions, in calculations of QED physical effects, in real and virtual intermediate states, only the 

states with positive energies are used.  

The QED versions were tested by calculations of physical processes.

In the lowest order of the perturbation theory, cross-sections of the Coulomb electron scattering, scattering 

of an electron on a proton, the Compton-effect, annihilation of electron-positron pairs were calculated. The 

self-energy of electron, self-energy of photon, anomalous magnetic moment of electron, the Lamb shift of 

energy levels were calculated. The final results completely coincide with the results of the standard QED 

with the Dirac sea.
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Conclusions

In the QED versions under discussion, the new conception of fermion vacuum leads to new 

physical consequences.

1. In these QED versions, there is no “Zitterbewegung” of fermion coordinates. This fact associated 

with absence of virtual interaction between the states of fermions with positive and negative 

energies was already mentioned in the first Foldy-Wouthuysen’s paper.

2. For the same reasons, there is no Klein paradox in these QED versions. 

3. In the QED versions under discussion, there are no processes of vacuum creation of particle-

antiparticle pairs in intense electromagnetic field. In particular, there is no Schwinger effect, i.e., 

vacuum creation of pairs in a strong uniform electrical field.

This conclusion can be experimentally verified in the future. The intensity of the critical field 

necessary for vacuum creation of pair, can be achieved both at the facilities with exawatt-power 

optic lasers and in the experiments in collision of heavy ions with total Z 170 175 in the FAIR, 

HIAF, NICA acceleration centers under construction.
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Description of some quantum electrodynamics effects in updated QED

Below, we will use the formulas with designations like in Standard model (see, for example, 

[1])

If then the Dirac free equation has the form of 

By analogy, if then the Dirac free equation for positrons has 

the form of
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[1] J. D. Bjorken, S. D. Drell, The Relativistic Quantum Theory, McGraw-Hill Book Company (1964).
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Description of some quantum electrodynamics effects in updated QED

The retarded propagators for electrons and positrons are equal to, correspondingly 

A condition of completeness for and are equal to

Here and further, the dash above the function means the Hermitian conjugation with the next 
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Description of some quantum electrodynamics effects in updated QED

 Compton scattering of an photon on the electrons (positrons).

Fig. 1. Feynman diagrams of the second order of the perturbation theory.

In Fig. 1 are either four-momentum and spins of electrons or four-momentum and 

spins of positrons.                 are momenta and polarizations of absorbed and emitted photons.
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Description of some quantum electrodynamics effects in updated QED

A matrix element of S-matrix is equal to

The cross-section for nonpolarized electron or positron is equal to (see, for example, [1])

Here, the upper sign in front of a mass m should be used in the calculating of scattering cross-

section of a photon on an electron, the lower sign - in the calculating of scattering cross-section

of a photon on an positron. Both cross-sections are equal and coincide with the cross-section 

calculated in the standard QED.

     

         

2 2
4 4

2

1
2 , ,

2 2

ˆ ˆ ˆ ˆ , , .
ˆ ˆˆ ˆ

fi f i f f

f i

i i

i i

e m
S p k p k u p s m

V E E k k

i i
i i i i u p s m

p k m p k m

 

   
 

     


 
        

  

compt

22

,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ1
Sp .

2 2 2 2 2 2 2 2
i f

f i

s s i i i i

p m p md d a k k k k k

d d k m kp k p m kp k p

         



           
       

        


[1] J. D. Bjorken, S. D. Drell, The Relativistic Quantum Theory, McGraw-Hill Book Company (1964).
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Description of some quantum electrodynamics effects in updated QED

 Annihilation of electron-positron pair

Fig. 1. Feynman diagrams of the second order of perturbation theory.
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Fig. 2. Feynman diagrams of the second order of perturbation theory.
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Description of some quantum electrodynamics effects in updated QED

In Fig.1, we use the electron propagators and in Fig.2 we 

use the positron propagators and 

The diagrams of Figs. 1 and 2 are equivalent to each other since they coincide at 

When calculating the annihilation cross-section, one can be used either the diagrams of 

Fig. 1, or the diagrams of Fig.2.

By analogy with the standard QED (see, for example, [1]), differential annihilation cross-section

corresponding, for example, to the diagrams of Figs. 1 is equal to

This expression is cited for the case of nonpolarized positron collided with nonpolirized electron at 

rest in laboratory system. It fully coincides with corresponding expression in the standard QED.
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[1] J. D. Bjorken, S. D. Drell, The Relativistic Quantum Theory, McGraw-Hill Book Company (1964).



Here, the upper sign in front of the mass correspond to the self-energy of electron, and  the 

lower sign correspond to the self-energy of positron. As a result, after calculations, both 

expressions coincide with each other and with the expressions for self-energies of electron 

and positron in the standard QED.
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 Self-energies of electron and positron
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In Fig. 3, p is momentum of an electron (positron). In 

calculations one can used either retarded electron 

propagator or retarded positron propagator.

The self-energy operator in the second order of 

perturbation theory is equal to 

Fig. 3. Feynman diagram in the 

second order of perturbation theory.



In the second order of perturbation theory, the photon 

propagator can be written as 

Tensor is equal to 
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Fig. 4. Feynman diagrams in the 

second order of perturbation theory
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 Self-energy function of photon
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Tensor  coincides with the appropriate tensor in the standard QED in the final expressions. 
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