

QCD Physics with CMS detector

Olga Kodolova, SINP MSU

(on behalf of CMS collaboration)

Outline

- Motivation
- Soft physics
- Hard physics
- Summary

Motivation

QCD is the theory that explains strong interactions as part of the Standard Model

What is new at LHC:

Probing the new territory (x,Q²) range

Why we need to study:

- Although QCD is the basic theory of strong interactions its parameters are still not well known.
- Important background for new territory in physics searches enormous cross section: QCD can hide many possible signals of new physics
- QCD defines the hadronization process of partons whatever interaction mediator is in the hard production vertex

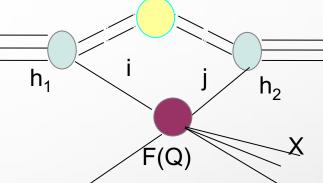
What we need to study:

- proton structure,
- constrain the strong coupling
- pQCD theory components
- study non-perturbative effects
- tune Monte-Carlo generators

How do we proceed?

Collect puzzles!

QCD at hadron colliders


 $\begin{array}{c} \mu_{\text{F}} - \text{factorization scale separates long} \\ \quad \text{and short distance physics} \\ \alpha_{\text{S}} \left(\mu_{\text{R}} \right) - \text{running coupling constant} \\ \mu_{\text{R}} - \text{renormalization scale} \\ \mathbf{Q}^2 = -\mathbf{q}^2 - \text{transferred momentum} \end{array}$

$$p_1=x_1P_1$$

$$p_2 = x_2 P_2$$

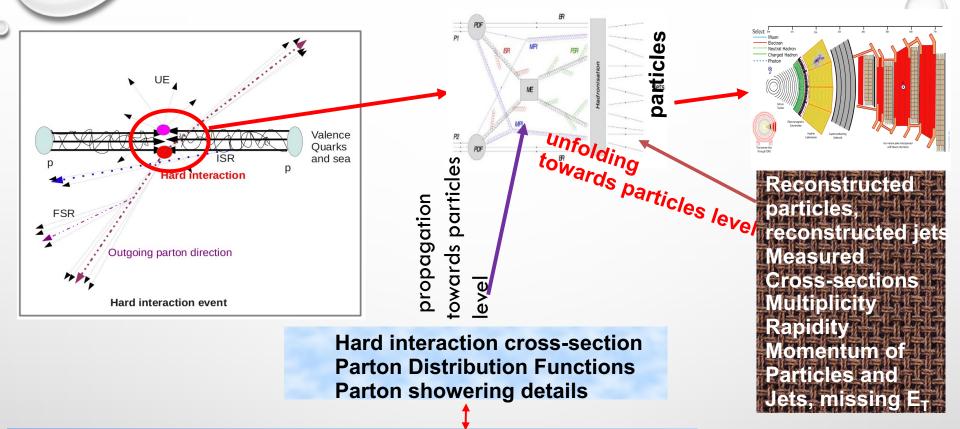
Factorization property

Soft underlying event

Hard interaction: production of the high-p_T objects

$$\sigma(P_{h_1}, P_{h_2}) = \sum_{i,j} \int dx_1 dx_2 f_{i/h_1}(x_1, \mu_F^2) f_{j/h_2}(x_2, \mu_F^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_S(\mu_R), Q^2; \mu_F^2, \mu_R^2)$$

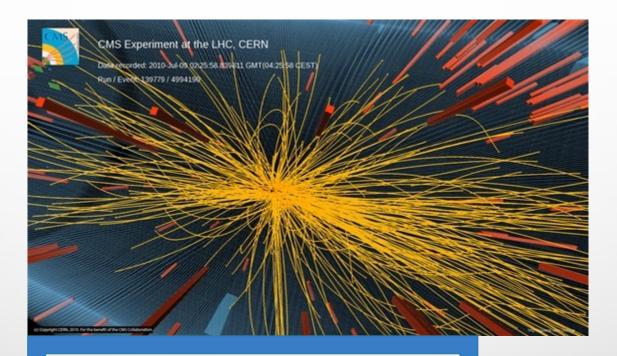
Parton distribution function (PDF)


Soft interaction: production of the low-p_T hadrons

Partonic cross-section computed in pQCD

$$\hat{\sigma}_{ij} = \alpha_S^k \sum_n \left(\frac{\alpha_S}{\pi}\right)^n \sigma_{ij}^n$$

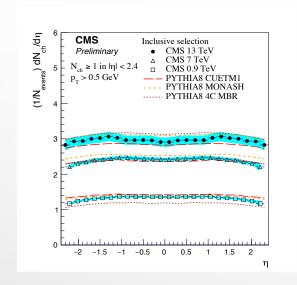
Fixed order pQCD


How do we proceed

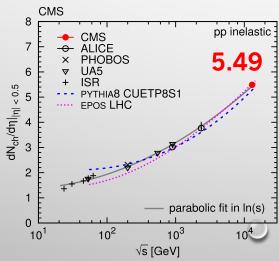
Theory approximations

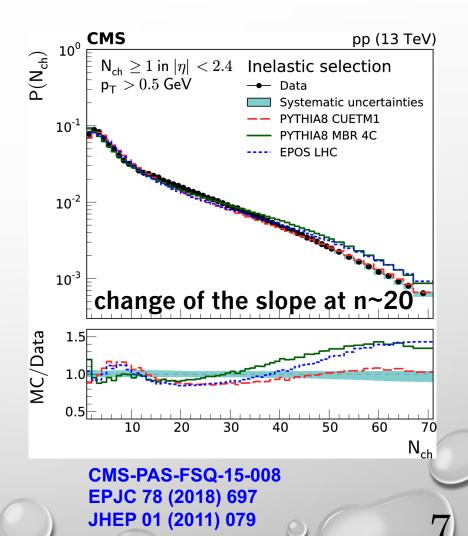
- Perturbative QCD (pQCD):
 - LO, NLO, NNLO calculations: ME + parton showering (PS),
 - threshold resummation
- non-pQCD: (Multi-parton interactions (MPI),
 - **String/Cluster fragmentation models)**

Soft particle production

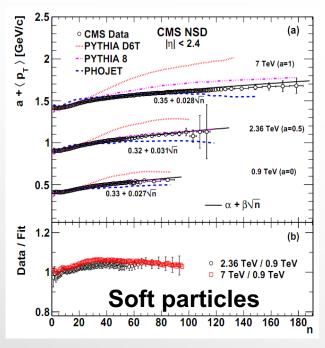


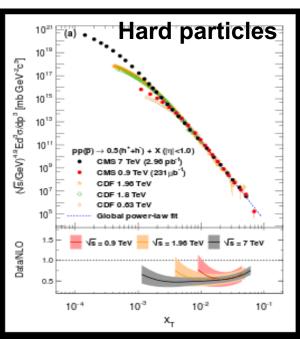
Charged particle multiplicity Scaling, correlations Underlying event

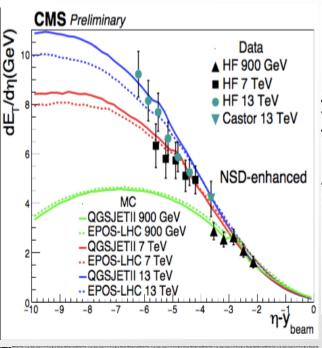

Charged particles


new input to the dynamics of soft hadronic interactions: interplay between soft and hard processes: no one MC describes data in all configurations

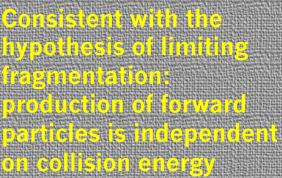
 $p_T > 500 \text{ MeV}, \\ |\eta| < 2.4$



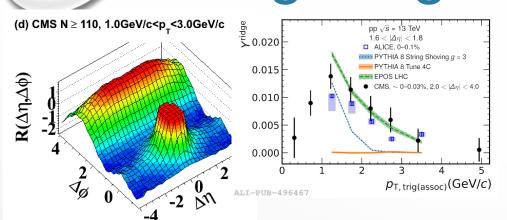

 $p_T > 0 \text{ MeV}, \\ |\eta| < 0.5$



p_T & x_T & limiting fragmentation



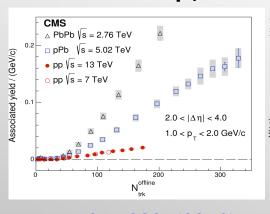
l friendisco en larg Sp. 2. villia. Inteligiolizatavi iz islotoregy Vilensionalizatav


The CMS results are consistent with k_r=2p_r/vs-scaling (pQCD prediction with exponent N=4.9 +- 0.1

Sensitive to the interplay between soft, semi-hard and hard particles production

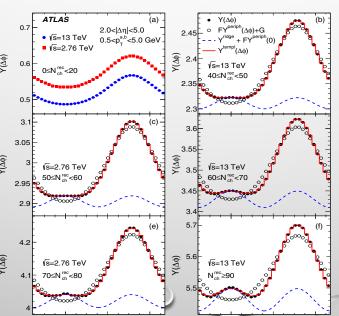
JHEP 08 (2011) 086 JHEP 01 (2011) 079 EPJC 79 (2019) 391

Long-range correlations


Qualitatively described effect: PYTHIA8 string shoving: interacting strings

EPOS LHC:

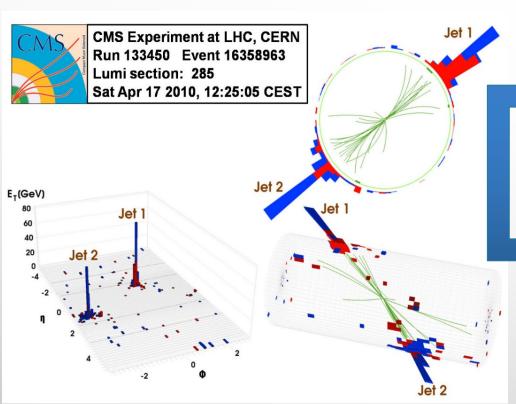
hydrodynamical evolution
Of high-density core (formed by color
String fields)


Ridge at $\Delta \phi \sim 0$ and large $\Delta \eta$ at high

multiplicity in pp events at intermediate p_T

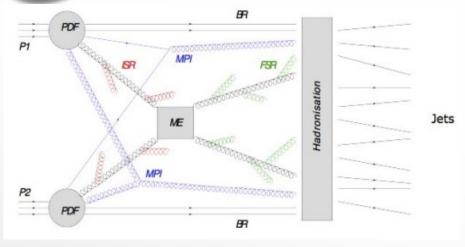
PRL 116,172301(2016) PRL 116,172302(2016) JHEP05 (2021), 290

Agreement with ATLAS and ALICE


Superposition the low multiplicity yield and modulation as $\cos(2\Delta\phi)$. Extracted $V_{2,2}$ exhibit factorization.

$$R(\Delta\eta,\Delta\phi) = \left\langle (N-1) \left(\frac{S_N(\Delta\eta,\Delta\phi)}{B_N(\Delta\eta,\Delta\phi)} - 1 \right) \right\rangle_N$$

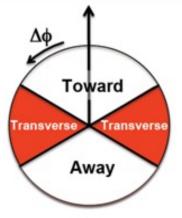
$$B_N(\Delta \eta, \Delta \phi) = \frac{1}{N^2} \frac{d^2 N^{\text{mixed}}}{d\Delta \eta d\Delta \phi}$$


$$S_N(\Delta\eta,\Delta\phi) = \frac{1}{N(N-1)} \frac{d^2 N^{\rm signal}}{d\Delta\eta d\Delta\phi}$$

Hard interactions

PDFs and α_S measurement DPS DGLAP vs BFKL Multijet correlations

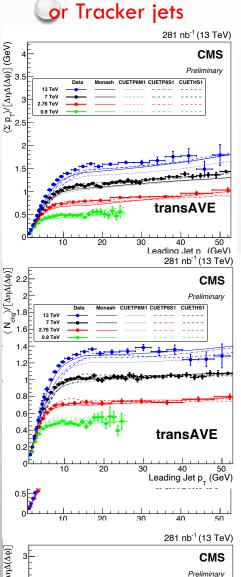
Underlying events

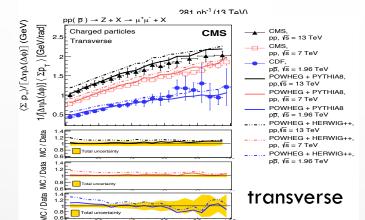


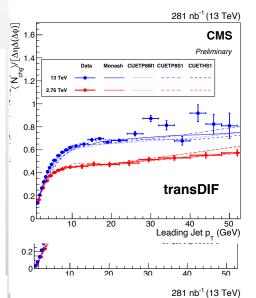
Soft & semi-hard & hard

Beam remnants (BR): everything besides the hard (part of the) interaction, i.e.

Initial (ISR) and final (FSR) state radiation.

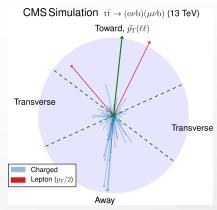

Multiple Parton Interactions (MPI). If higher pt interactions — Double Parton Scattering

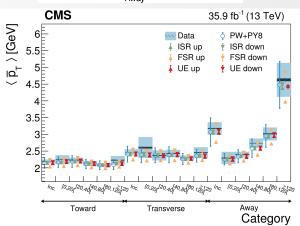

UE activity is typically studied in the transverse region in pp collisions as a function of the hard scale of the event, and at different centre-of-mass energies (√s):
Particle production in MinBias events or events with high energy track or jet (hadronic events)
Drell-Yan events, Top events (new)


Underlying events

High p_T track or Tracker jets

Z+jets

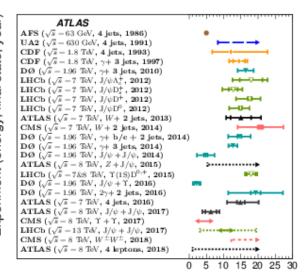



IS, √S = 13 TeV IS, √S = 7 TeV IF, √S = 1.96 TeV WHEG + PYTHIAB, √S = 13 TeV WHEG + PYTHIAB, √S = 7 TeV WHEG + PERWIG++, √S = 1.96 TeV WHEG + HERWIG++, √S = 13 TeV WHEG + HERWIG++, √S = 7 TeV WHEG + HERWIG++, √S = 7 TeV

ards oson

CMS

ttbar events



JHEP 07 (2018) 032 EPJC 79 (2019) 123 JHEP 09 (2015) 137

Double Parton scattering (DPS)

Two and more hard interactions within the same production vertex can happen.

DPS is characterized by

 $\sigma_{\rm eff}$ [mb]

DPS with 4 jets events

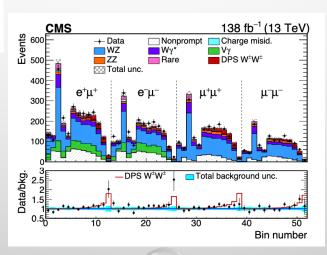
JHEP01 (2022) 177 (13 TeV): A strong dependence of the extracted values of σ eff on the model used to the describe the SPS contribution is observed.

$$\sigma_{\text{eff}} = 7-35 \text{ mb}$$
 $\sigma_{\text{DPS}} = 15-70 \text{ nb}$

$$\sigma_{ ext{DPS}}^{ ext{AB}} = rac{m}{2} rac{\sigma_{ ext{SPS}}^{A} \sigma_{ ext{SPS}}^{B}}{\sigma_{ ext{eff}}} \hspace{0.5cm} \sigma_{ ext{eff}} = \left[\int d^{2}b \left(T(\mathbf{b})
ight)^{2}
ight]^{-1}$$

 $\sigma_{\rm eff}$ is 2-10 (10 to 20) mb for g(q)

T(b) is the overlap function of two interacting hadrons


First observation in same sign WW at 13 TeV (138 fb⁻¹):

CMS-PAS-SMP-21-013, Accepted by PRL

 σ_{DPS}^{WWinc} =80.7 ±11.2(stat)+9.5(syst)-8.6(syst)±12.1(model) fb

 σ_{DPS}^{WWfid} =6.28 ±0.81(stat)±0.69(syst) ±0.37(model) fb Observed significance = 6.2

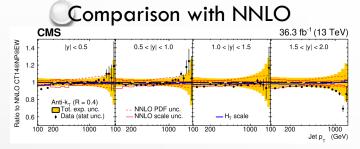
 $\sigma_{\rm eff}$ = 12.2 +2.9-2.2 mb

DPS with Z+jets

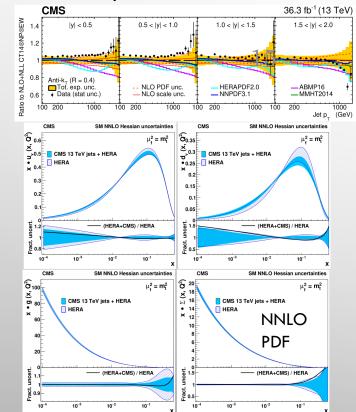
JHEP 2110(2021)176
Give the additional possibility to constrain MPI models

PDFs and α_S

For the fixed pQCD order and definite PDF evolution (DGLAP, BFKL, CCFM,..):

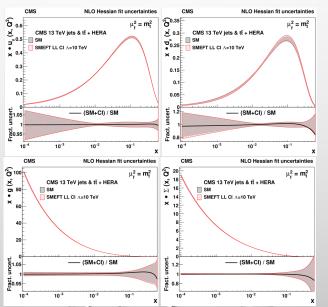

- A) Define PDFs at fixed α_s
- B) Define α_{S} for the particulary PDF set which gives the best approximation of the Data by Theory
- C) Combined PDFs and α_{S} fit

Process	Sensitivity
W mass measurement	Valence quarks
W,Z production	Quark flavor separation
W+c production	Strange quark
Drell-Yan, high mass	Sea quark, high-x, photon PDF
Drell-Yan low mass	Low-x, resummation
W,Z+jets	Gluon medium-x
Inclusive jets, multijets	Gluon and $\alpha_{\rm S}({ m M_Z})$
Direct photon	Gluon medium, high-x
ttbar, single top	Gluon, $\alpha_{S}(M_{Z})$


Differential production (single, double, triple), correlations, ratios, asymmetry

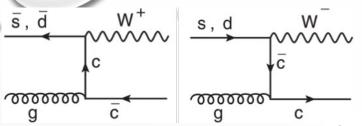
Jet production: sensitivity to g-PDF and to α_S

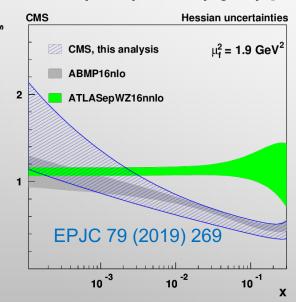
CMS, 13 TeV, Integrated luminosity 36.3 fb⁻¹

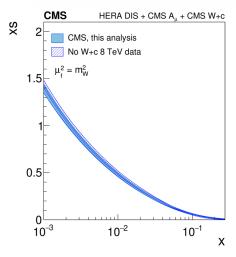

Comparison with NLO+NLL

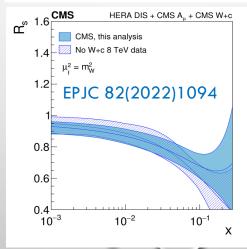
Double-differential inclusive jet production + HERA DIS + the normalized triple-differential ttbar cross-section, DGLAP evolution PDF and $\alpha_{\rm S}(M_{\rm Z})=0.1170+-0.0019$ at NNLO (approximated by k from NLO), uncertainties comparable with world average

PDF at NLO extracted simultaneously with

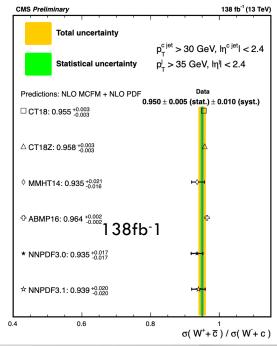

Wilson coefficient in EFT (SMEFT)

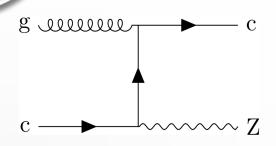

NLO PDF
with Contact
Interactions

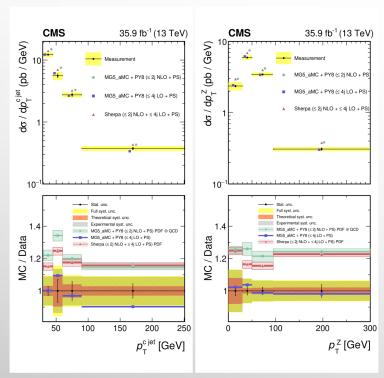

No evidence for Contact Interactions: 95% confidence level exclusion limit for the left-handed model with constructive Interference Λ > 24 TeV


W+c: strange quark PDF

PDFs are probed at < x >≈ 0.007 at the scale of W mass 13 TeV (CMS, 36 fb⁻¹): σ (W + c) = 1026 ± 31 (stat) ± 72 (syst) pb




$$R_S = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$


From neutrino scattering Rs=0.5 At Q2=1.9 GeV2 strange sea-quark density is suppressed

CMS-PAS-SMP-21-005, submitted to EPJC

Z+c: towards c-PDFs

One step before c-quark PDF extraction

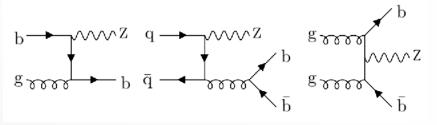
Inclusive Z+c cross-section:

 405.4 ± 5.6 (stat)

 \pm 24.3 (exp)

 \pm 3.7 (theo) pb

MadGraph5+MCatNLO:


 524.9 ± 11.7 (theo) pb

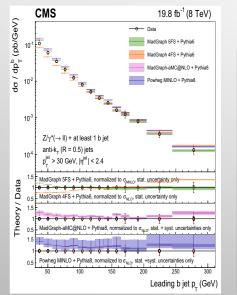
MCatNLO and Sherpa overestimate Z+c cross-section at NLO and MCatNLO agreed with data at LO.

For Z+jets, NLO calculations has better agreement with data then LO -> PDF overestimate c-content?

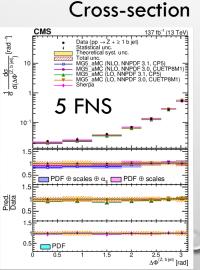
JHEP04 (2021) 109 EPJC 78(2018) 287

Z+b: towards b-quarks PDFs and 4 vs 5-flavor schema

CMS 137fb⁻¹

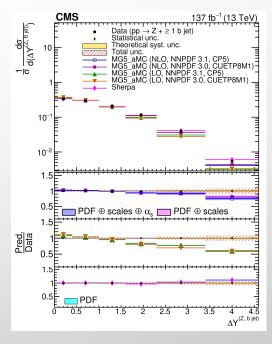

 $|p_T|>35$ GeV, $p_T^{\text{sublead}}>25$ GeV

 $|\eta| < 2.4$, $M_Z = [71-111]$ GeV


Generator b-jet $p_T > 30$ GeV, $|\eta| < 2.4$

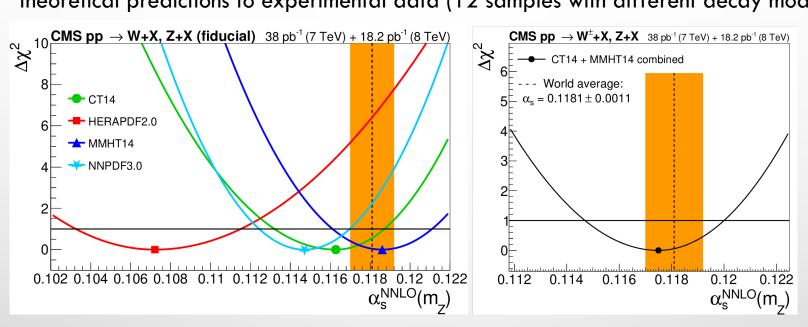
 $\sigma_{\text{fid}}(Z+>=1b) = 6.52+-0.04+-0.4+-0.014 \text{ pb}$

 $\sigma_{fid}(Z+>=2b) = 0.65+-0.03+-0.07+-0.02 \text{ pb}$


Normalized to fiducial

Current simulations are in NLO either in 4 or 5 FNS.

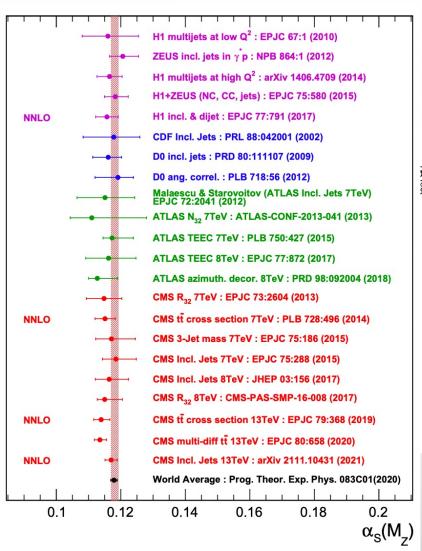
In 4 FNS b-quark does not contribute to PDF.

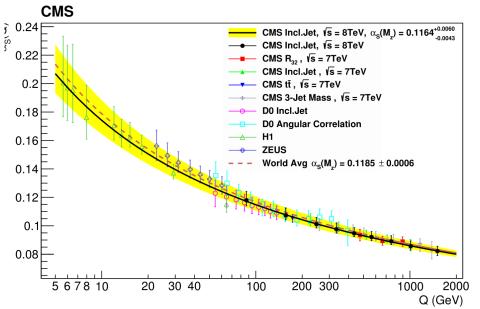

Massive b through gluon splitting
In 5 FNS b-quark typically massless but b
contributes to PDF

CMS: PRD 105 (2022) 092014 EPJC 77 (2017) 751

W+-, Z production and α_S

Sensitive to $\alpha_S(m_Z)$ due-to ISR, virtual gluon exchange, gq scattering (NLO, NNLO, ...). Calculate V-production cross-section at NNLO level for varying $\alpha_S(m_Z)$ and compare theoretical predictions to experimental data (12 samples with different decay modes).

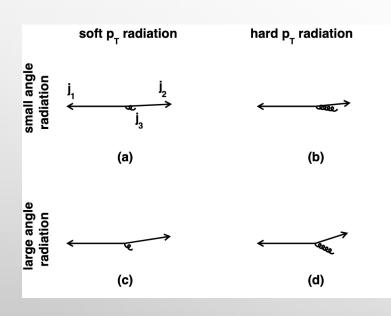



Cross-sections with CT14 and MMHT14 sets are the most sensitive to the underlying α_S value. Robust and stable with respect to variations in the data and theoretical cross sections. The result derived combining the CT14 and MMHT14 extractions:

$$\alpha_s(m_z)$$
= 0.1175+0.0025-0.0028, has a ≈2.3%

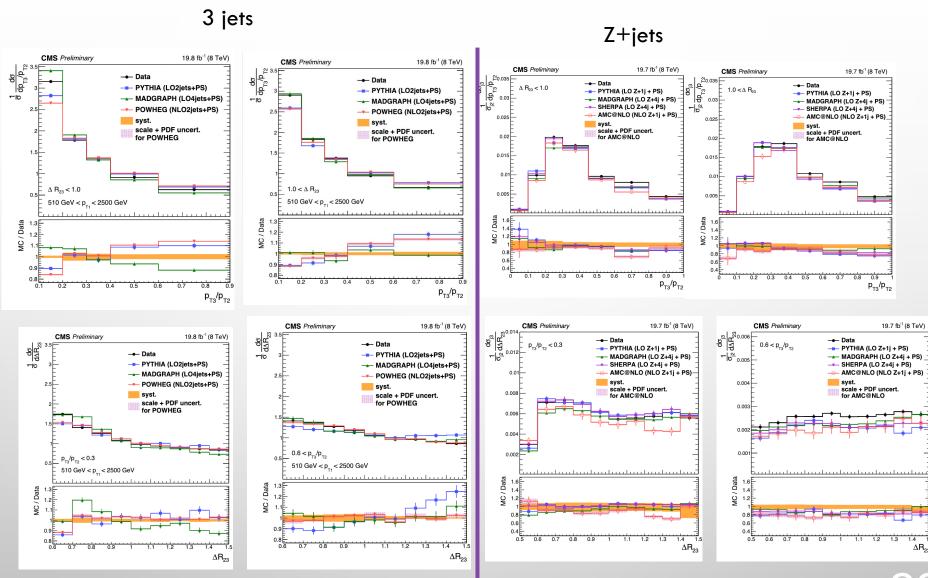
This extracted value is fully compatible with the current $\alpha_s(m_z)$ world average.

Summary on α_S



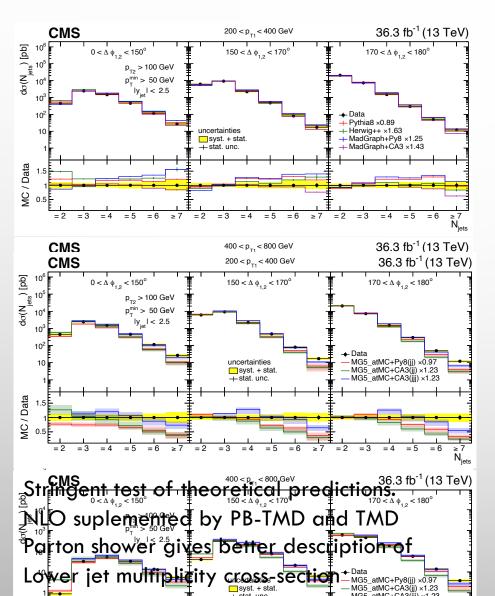
MULTI-JET CORRELATIONS

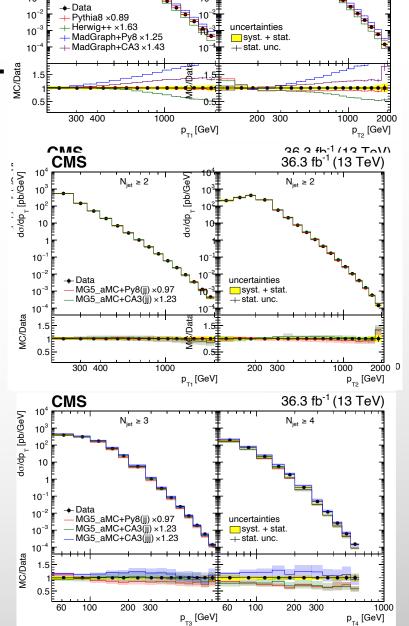
Theoretical predictions are based on


- MATRIX ELEMENT EXPANSION AND PARTON SHOWER
- MULTI-PARTON INTERACTIONS AND HADRONIZATION

Study with 3 jets and Z+2jets events at 8 and 13 TeV

3-jet event	selection
transverse momentum of the leading jet (j_1)	$p_{\rm T1} > 510 {\rm GeV}$
transverse momentum for each jet and rapidity for $j_{1,2}$	$p_{\rm T} > 30 {\rm GeV}$, $ y_{1,2} < 2.5$
azimuthal angle difference between j_1 and j_2	$2.14 < \Delta \phi_{12} < \pi$
transverse momentum ratio between j_2 and j_3	$0.1 < p_{\mathrm{T3}}/p_{\mathrm{T2}} < 0.9$
angular distance between j_2 and j_3	$R_{\rm jet} + 0.1 < \Delta R_{23} < 1.5$
Z+2 jet event	selection
transverse momentum of $Z(j_1)$	$p_{\rm TZ} > 80 {\rm GeV}, y_{\rm Z} < 2$
transverse momentum and rapidity for j_2	$p_{\rm T2} > 80{\rm GeV}$, $ y_2 < 1$
transverse momentum and rapidity for j_3	$p_{\rm T3} > 20 {\rm GeV}$, $ y_3 < 2.4$
azimuthal angle difference between Z and leading j_2	$2< \Delta\phi_{\mathrm{Z,2}} <\pi$
dimuon mass	$70 < m_{\rm Z} < 110 {\rm GeV}$
angular distance between j_3 and j_2	$0.5 < \Delta R_{23} < 1.5$


3-JET EVENTS VS Z+2JETS AT 8 TEV



Normalization to Integral of histograms

Normalization to Z+1 jet events Allow to estimate the rate of 2^{nd} jet

MULTIJETS MULTIPL TO THE TOTAL TO THE TOTAL TOTA

Summary

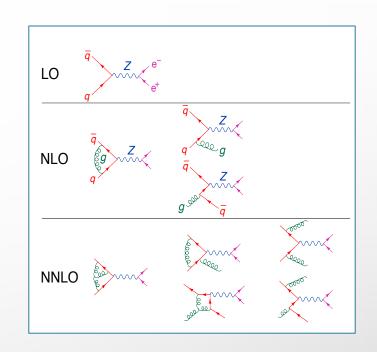
- CMS measures both hard and soft QCD processes in various phase space regions and compare them with a wide range of LO , NLO and NNLO calculations
- CMS measurements are used for the combinations with other experiments in global fits and in Monte-Carlo Models tuning. Validation of the QCD predictions (scaling properties, particles spectra, strong coupling behavior, PDFs, evolution, etc) allows to further constrain and tune existing models.

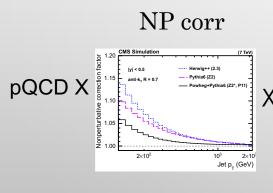
 More results can be found in CMS public web page:

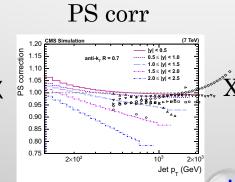
http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

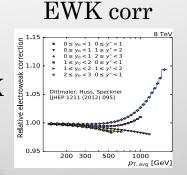
Back-up

Perturbative QCD (pQCD)


pQCD prediction at fixed order calculation Singularities (soft and collinear) are:


- □ partially cancelled between real and virtual contributions,
- ☐ partially absorbed in PDFs and coupling renormalizations


Finally, fixed order QCD calculations are matched with parton showers (PYTHIA or HERWIG)


Monte-Carlo models which represent soft and collinear radiation patterns

OR in alternative approach non-perturbative and Electroweak corrections are applied as weights

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-13054.pdf

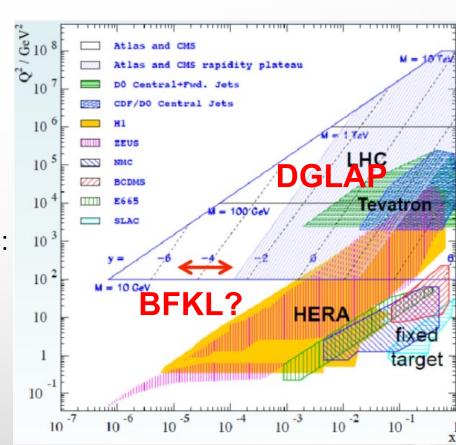
QCD Evolution equation

Connection between various scales in QCD (for instance, between PDF and the high-momentum scattering) is performed via evolution differential equations.

In small-x region standard approach to NLO QCD perturbative calculations.

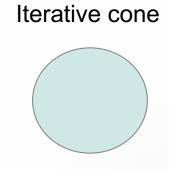
DGLAP (expansion in terms of power of a_S In(Q²)) is predicted to be not sufficient.

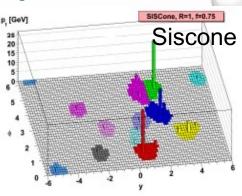
Need to develop alternative approaches:


BFKL (expansion in terms of ln(1/x)).

CCFM angular and energy ordering

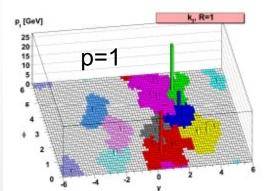
LDC (Linked dipole chain)

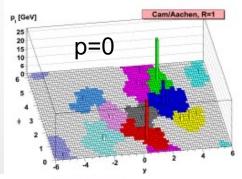

. . .

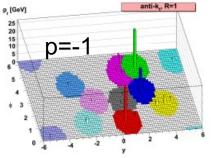

Non perturbative effects, Multi Parton Interaction (MPI) etc. models have to be tuned to data.

Jet clustering technique

Fixed cone algorithms:
Iterative Cone (CMS) / JetClu (ATLAS)
Midpoint algorithm (CDF/D0)
Seedless Infrared Safe Cone (SISCone)


Successive recombination algorithms:


$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\delta_{ij}^{2}}{R^{2}}$$
$$d_{iB} = k_{ti}^{2p}$$


if(d_{ij} < d_{iB}) add i to j and recalculate p_j

p=1 ->k_T jet algorithm p=0 ->CA jet algorithm p=-1 ->"Anti-k_T" jet algorithm

CMS uses R=0.5,0.7 in Run1 R=0.4,0.6 in Run2 ATLAS uses R=0.4,0.6 in Run1,2

Jet reconstruction in detector

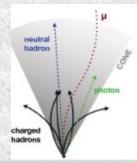
Calorimeter jets (CaloJets):

Jet clustered from Calorimeter Towers (CMS,ATLAS) Or TopoClusters (ATLAS) CaloMET

Anti-Kt clustering algorithm is applied to the different objects

Tracker jets (TrackJets):
Jet clustered from Tracks

Subdetectors: Tracker


(ATLAS, CMS, ALICE)

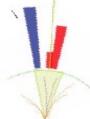
ParticleFlow jets (PFJets):

Jet clustered from Particle Flow objects (a la generator level particles) which are reconstructed based on cluster separation.

Subdetectors: ECAL,HCAL, Tracker, Muon

PFMET CMS

All subdetectors participate in reconstruction

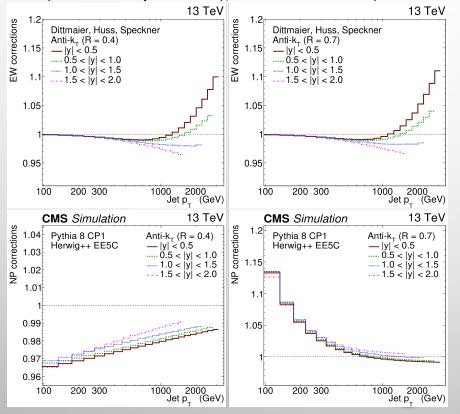

The residual jet energy corrections is applied on top of all algorithms

JetPlusTrack jets (JPTJets):
Starting from calorimeter
jets tracking information is
added via subtracting
average response and
replacing with tracker

measurements. Subdetectors:

ECAL, HCAL, Tracker, Muon TcMET

CMS


Addition to SMP-20-011 JHEP 02(2022) 142

Fixed pQCD at NLO and NNLO with NLOJet++ and NNLOJET NLO calculation in FASTNLO.

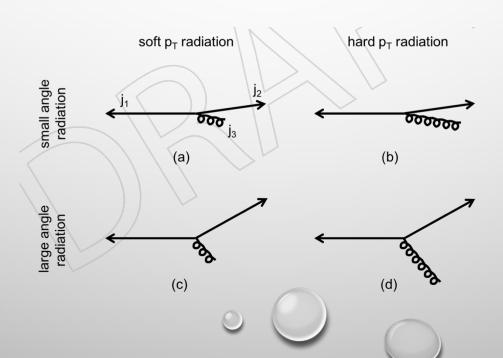
 $\mu_f = \mu_R = p_{Tiet}$ (or HT)

NLO improved to NLO+NLL using MEKS

PDF sets: CT14, NNPDF 3.1, MMHT2014 (includes 7 TeV ATLAS and CMS jet data), ABM16 (no 7 TeV jet data), HERAPDF 2.0 (HERA DIS only)

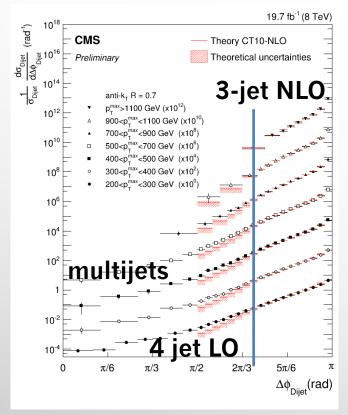
EWK Corrections
At NLO accuracy

NP corrections:

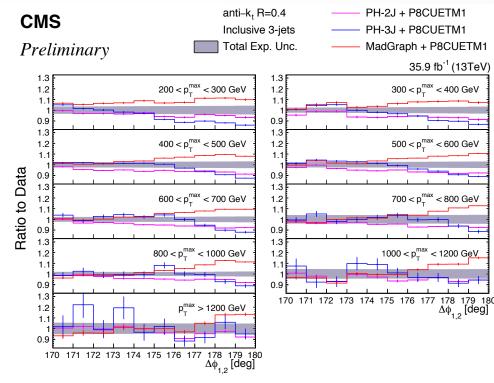

PYTHIA 8 CP1 tune

HERWIG++ EEC5 tune

Multi-jet correlations


Theoretical predictions are based on

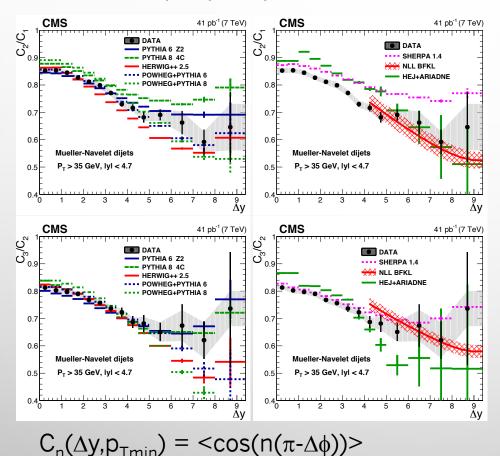
- Matrix element expansion and parton shower
- Multi-parton interactions and hadronization


Azimuthal decorrelations

 $\Delta \phi_{jj}$ in bins of p_{T1} for p_T>100 GeV, p_{T1}>200GeV, |y₁|<2.5, |y₂|<2.5

Comparison is done with fixed-order pQCD (NLO) and with LO ME+PS

Back-to-back region of dijet correlations-sensitive probe of soft gluon radiation

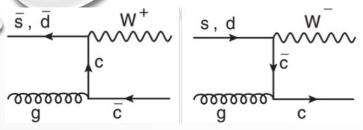


Deviations (~10%) are observed for all tested generators

EPJC 76 (2016) 536 CMS-PAS-SMP-17-009

Angular correlations of jets

- Events with at least two jets passing cuts: $p_T > 35$ GeV in $|\eta| < 4.7$
- For a pair of jets with the largest $\Delta \eta$ (CMS) the angular distance is calculated: $\Delta \phi = \phi 1 \phi 2$



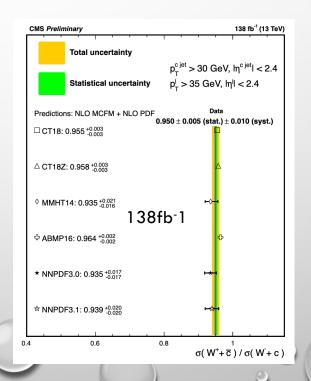
DGLAP generators start to be worse in high ∆y description

Analytical BFKL calculations at NLL accuracy with an optimized renormalization schema provide reasonable description of data for the measured jet variables at $\Delta y > 4$

JHEP08(2016)139

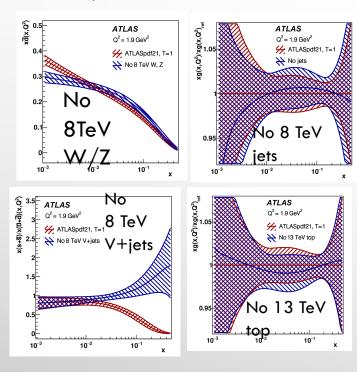
W+c: strange quark PDF

PDFs are probed at < x >≈ 0.007 at the scale of W mass

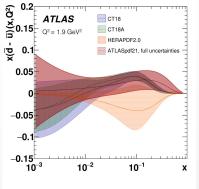

13 TeV (CMS, 36 fb⁻¹): σ (W + c) = 1026 ± 31 (stat) ± 72 (syst) pb

$$R_s = \frac{1}{\sqrt{200}}$$

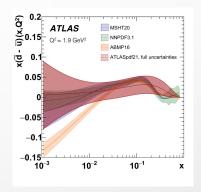
$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

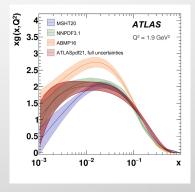

From neutrino scattering Rs=0.5 At Q2=1.9 GeV2 strange sea-quark density is suppressed

CMS-PAS-SMP-21-005

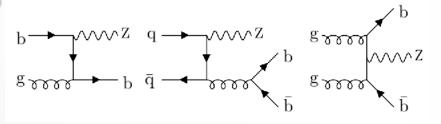


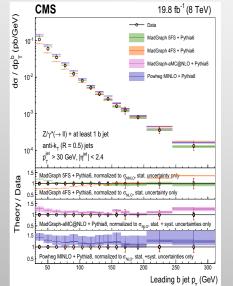
PDF global fit


7, 8, 13 TeV with 5, 20, 36 fb⁻¹ Differential cross-section if inclusive W+-, Z/γ^* and W+-.Z+jets, ttbar, inclusive jets, direct Photons; DGLAP evolution is used

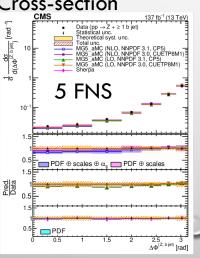


Resulting pdf set: ATLASpdf21



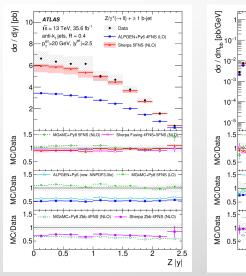


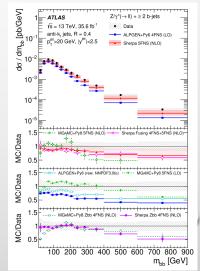
+b: towards b-quarks PDFs and 4 vs 5-flavor schema


CMS 137fb-1 |p_TI>35 GeV, p_Tsublead>25 GeV $|\eta| < 2.4$, $M_7 = [71-111]$ GeV Generator b-jet $p_T > 30$ GeV, $|\eta| < 2.4$

 $\sigma_{\text{fid}}(Z+>=1b) = 6.52+-0.04+-0.4+-0.014 \text{ pb}$ $\sigma_{fid}(Z+>=2b) = 0.65+-0.03+-0.07+-0.02 pb$

Normalized to fiducial

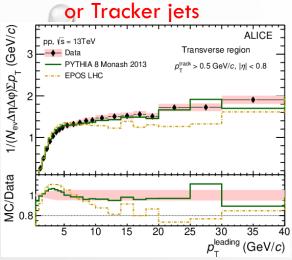

Cross-section

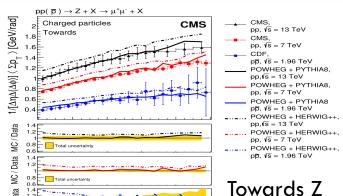


Current simulations are in NLO either in 4 or 5 FNS.

In 4 FNS b-quark does not contribute to PDF. Massive b through gluon splitting In 5 FNS b-quark typically massless but b contributes to PDF

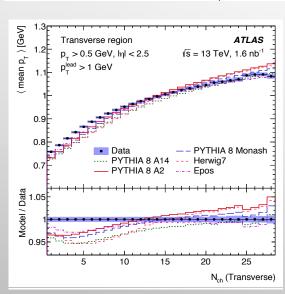
ATLAS 35.6 fb⁻¹

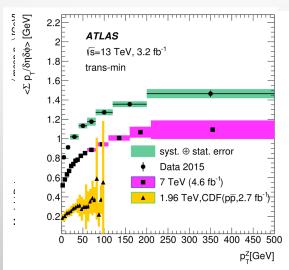



ATLAS: PRD2022 (submitted) – high-p_T b-quark JHEP07 (2020)44

CMS: PRD 105 (2022) 092014 EPJC 77 (2017) 751

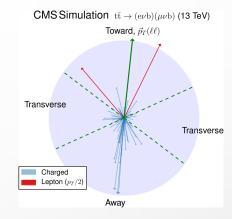
Underlying events CMS Simulation tit -> (ex

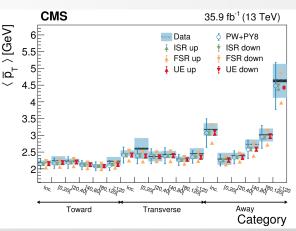

 $High p_T track$



p₊ [GeV]

 \sqrt{s} = 13 TeV, 1.6 nb⁻¹

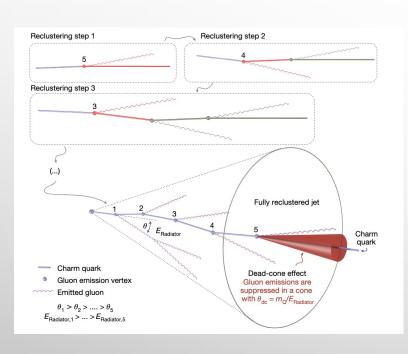


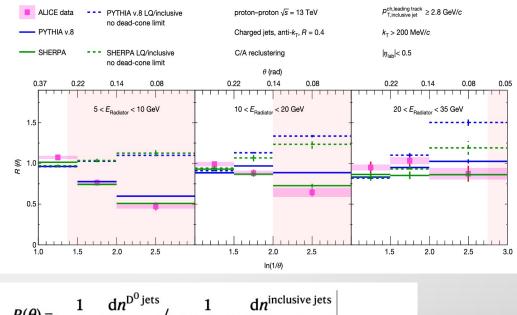


>[GeV]

Trans-min region

 $p_{-} > 0.5 \text{ GeV}, |\eta| < 2.5$




JHEP 07 (2018) 032 EPJC 79 (2019) 123 JHEP 09 (2015) 137 JHEP 03 (2017) 157 EPJC 79 (2019) 666 JHEP04 (2020) 192

Dead cone effect for heavy quarks

J. Physics G: Nucl. Part. Phys. 17 1602: dead cone in soft gluon radiation by heavy quark.

The dead cone size depends on m/E

$$R(\theta) = \frac{1}{N^{D^0 \text{ jets}}} \frac{dn^{D^0 \text{ jets}}}{d\ln(1/\theta)} / \frac{1}{N^{\text{inclusive jets}}} \frac{dn^{\text{inclusive jets}}}{d\ln(1/\theta)} \bigg|_{k_T, E_{\text{Radiator}}}$$

First direct observation of the dead cone effect.

ALICE: Nature volume 605, p. 440-446 (2022)