Influence of relativistic rotation on QCD properties

V. Braguta

JINR

30 August 2023

In collaboration with

- ▶ M. Chernodub
- ► A. Kotov
- A. Roenko
- ▶ D. Sychev

JETP Lett. 112, 9–16 (2020); JETP Lett. 117, 9, 639-644 (2023); Phys.Rev.D 103 (2021) 9, 094515; PoS LATTICE2022 (2023) 190; PoS LATTICE2021 (2022) 125; e-Print: 2303.03147

Outline:

- Introduction
- Critical temperatures
- ▶ Moment of inertia of QGP
- ▶ Inhomogeneous phase transitions in QGP
- Conclusion

 QGP is created with non-zero angular momentum in non-central collisions

Angular velocity from STAR (Nature 548, 62 (2017))

- $\Omega = (P_{\Lambda} + P_{\bar{\Lambda}}) \frac{k_B T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))
- $\Omega \sim 10 \text{ MeV} (v \sim c \text{ at distances } 10\text{-}20 \text{ fm})$
- Relativistic rotation of QGP

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s} = 200$ GeV, right b = 7 fm,
- ► $\Omega \sim (4 28)$ MeV
- ▶ Relativistic rotation of QGP

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s} = 200$ GeV, right b = 7 fm,
- $\triangleright \Omega \sim (4 28) \text{ MeV}$
- Relativistic rotation of QGP

How relativistic rotation influences QCD?

- ▶ Our aim: study rotating QCD within lattice simulations
- ▶ Rotating QCD at thermodynamic equilibrium
 - At the equilibrium the system rotates with some Ω
 - The study is conducted in the reference frame which rotates with QCD matter
 - ▶ QCD in external gravitational field
- Boundary conditions are very important!

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field
- ▶ The metric tensor

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & \Omega y & -\Omega x & 0 \\ \Omega y & -1 & 0 & 0 \\ -\Omega x & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

▶ Geometry of the system: $N_t \times N_z \times N_x \times N_y = N_t \times N_z \times N_s^2$

▶ Partition function (\hat{H} is conserved)

$$Z = \operatorname{Tr} \exp\left[-\beta \hat{H}\right] = \int DA \, \exp\left[-S_G\right]$$

Euclidean action

$$S_G = -\frac{1}{2g_{YM}^2} \int d^4x \sqrt{g_E} g_E^{\mu\nu} g_E^{\alpha\beta} F_{\mu\alpha}^{(a)} F_{\nu\beta(a)}$$

$$S_G = \frac{1}{2g_{YM}^2} \int d^4x \text{Tr} \left[(1 - r^2 \Omega^2) F_{xy}^a F_{xy}^a + (1 - y^2 \Omega^2) F_{xz}^a F_{xz}^a + \right]$$

$$+(1-x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a}++F_{x\tau}^{a}F_{x\tau}^{a}+F_{y\tau}^{a}F_{y\tau}^{a}+F_{z\tau}^{a}F_{z\tau}^{a}-$$

$$-2iy\Omega(F^a_{xy}F^a_{y\tau}+F^a_{xz}F^a_{z\tau})+2ix\Omega(F^a_{yx}F^a_{x\tau}+F^a_{yz}F^a_{z\tau})-2xy\Omega^2F_{xz}F_{zy}]$$

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$T(r)\sqrt{g_{00}}=const=1/\beta$$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$T(r)\sqrt{g_{00}} = const = 1/\beta$$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

▶ Rotation effectively heats the system from the rotation axis to the boundaries T(r) > T(r = 0)

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$T(r)\sqrt{g_{00}} = const = 1/\beta$$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

▶ Rotation effectively heats the system from the rotation axis to the boundaries T(r) > T(r = 0)

• One could expect that rotation decreases the critical temperature

 Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$T(r)\sqrt{g_{00}} = const = 1/\beta$$

$$T(r)\sqrt{1-r^2\Omega^2} = 1/\beta$$

▶ Rotation effectively heats the system from the rotation axis to the boundaries T(r) > T(r = 0)

• One could expect that rotation decreases the critical temperature

• We use the designation
$$T = T(r = 0) = 1/\beta$$

Boundary conditions

▶ Periodic b.c.:

 $\blacktriangleright U_{x,\mu} = U_{x+N_i,\mu}$

▶ Not appropriate for the field of velocities of rotating body

► Dirichlet b.c.:

$$U_{x,\mu}\big|_{x\in\Gamma} = 1, \quad A_{\mu}\big|_{x\in\Gamma} = 0$$

Violate Z_3 symmetry

▶ Neumann b.c.:

• Outside the volume $U_P = 1$, $F_{\mu\nu} = 0$

- The dependence on boundary conditions is the property of all approaches
- One can expect that boundary conditions influence our results considerably, but their influence is restricted due to the screening

Sign problem

$$S_{G} = \frac{1}{2g_{YM}^{2}} \int d^{4}x \operatorname{Tr}\left[(1 - r^{2}\Omega^{2})F_{xy}^{a}F_{xy}^{a} + (1 - y^{2}\Omega^{2})F_{xz}^{a}F_{xz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{x\tau}^{a}F_{x\tau}^{a} + F_{y\tau}^{a}F_{y\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} - (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} + F_{z\tau}^{a}F_{z\tau}^{a} - (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + (1 - x^{2}\Omega^{2})F_{yz}^{a} + (1 - x$$

$$-2iy\Omega(F^a_{xy}F^a_{y\tau} + F^a_{xz}F^a_{z\tau}) + 2ix\Omega(F^a_{yx}F^a_{x\tau} + F^a_{yz}F^a_{z\tau}) - 2xy\Omega^2F_{xz}F_{zy}]$$

- ▶ The Euclidean action has imaginary part (sign problem)
- $\blacktriangleright\,$ Simulations are carried out at imaginary angular velocities $\Omega \to i \Omega_I$
- ▶ The results are analytically continued to real angular velocities
- ▶ This approach works up to sufficiently large Ω

Details of the simulations: critical temperatures

${\bf Confinement/deconfinement\ phase\ transition}$

Polyakov line

$$L = \left\langle \operatorname{Tr} \mathcal{T} \exp \left[ig \int_{[0,\beta]} A_4 \, dx^4 \right] \right\rangle$$

Susceptibility of the Polyakov line

$$\chi = N_s^2 N_z \left(\langle |L|^2 \rangle - \langle |L| \rangle^2 \right)$$

▶ T_c is determined from Gaussian fit of the $\chi(T)$

Results of the calculation (Neumann b.c.)

Results of the calculation

• The results can be well described by the formula $(C_2 > 0)$

$$\frac{T_c(\Omega_I)}{T_c(0)} = 1 - C_2 \Omega_I^2 \Rightarrow \frac{T_c(\Omega)}{T_c(0)} = 1 + C_2 \Omega^2$$

▶ The critical temperature rises with angular velocity

► The results weakly depend on lattice spacing and the volume in *z*-direction

Simulation with fermions

- ► Lattice simulation with Wilson fermions: $m_{\pi} \simeq 700 \, \text{MeV}$
- Critical couplings of both transitions coincide
- Critical temperatures are increased (at least for $m_{\pi} \simeq 700 \,\mathrm{MeV}$)

EoS of rotating gluodynamics

► Free energy of rotating QGP

$$F(T, R, \Omega) = F_0(T, R) - \frac{1}{2}I(T, R)\Omega^2, \quad I(T, \Omega) = -\frac{1}{\Omega} \left(\frac{\partial F}{\partial \Omega}\right)_T$$

$$I = I_{fluct} + I_{cond} I_{fluct} = \ll J_3^2 \gg_T, I_{cond} = \frac{1}{3} \int d^3x r^2 \ll H^2 \gg_T$$

▶ Moment of inertia is related to the scale anomaly in QCD

$$\ll E^2 \gg_T + \ll H^2 \gg_T \sim -T^{\mu}_{\mu}$$

▶ Instead of I(T, R) we calculate $K_2 = -\frac{I(T, R)}{F_0(T, R)R^2}$

Calculation of free energy on the lattice

►
$$F = -T \log Z$$
 impossible to calculate on the lattice
► $\frac{\partial F}{\partial \beta} \sim \langle \Delta s(\beta) \rangle = s(\beta)_T - s(\beta)_{T=0}, \quad \beta = \frac{6}{g^2}$
► $\frac{F(T)}{T^4} \sim \int_{\beta_0}^{\beta_1} d\beta' \langle \Delta s(\beta') \rangle$

Moment of inertia of gluon plasma

- $I(T, R) = -F_0(T, R)K_2R^2$
- I < 0 for $T < 1.5T_c$ and I > 0 for $T > 1.5T_c$
- Negative moment of inertia indicates a thermodynamic instability of rigid rotation
- The region of I < 0 is related to magnetic condensate and the scale anomaly
- We believe that the same is true for QCD

Inhomogeneous phase transitions in QGP

Polyakov loop strongly depends on distance to the rotation axisConfinement in the center and deconfinement close to boundary

Inhomogeneous phase transitions in QGP

- Strong inhomogeneity of Polyakov loop close to $\sim T_c$
- Weak dependence on distance at large temperatures

Conclusion

- Lattice study of rotating gluodynamics and QCD have been carried out
- ▶ Critical temperatures rise with rotation
- We calculated the moment of inertia of GP. It is negative at temperatures $T < 1.5T_c$ and positive at larger temperatures
- Negative moment of inertia indicates a thermodynamic instability of rigid rotation
- ▶ We observed inhomogeneous phase transitions in GP
- ▶ We believe that all observed effects remain in QCD

Conclusion

- Lattice study of rotating gluodynamics and QCD have been carried out
- ▶ Critical temperatures rise with rotation
- We calculated the moment of inertia of GP. It is negative at temperatures $T < 1.5T_c$ and positive at larger temperatures
- Negative moment of inertia indicates a thermodynamic instability of rigid rotation
- ▶ We observed inhomogeneous phase transitions in GP
- ▶ We believe that all observed effects remain in QCD

THANK YOU!