Influence of relativistic rotation on QCD properties

V. Braguta

JINR
30 August 2023

In collaboration with

- M. Chernodub
- A. Kotov
- A. Roenko
- D. Sychev

JETP Lett. 112, 9-16 (2020); JETP Lett. 117, 9, 639-644 (2023); Phys.Rev.D 103 (2021) 9, 094515; PoS LATTICE2022 (2023) 190; PoS LATTICE2021 (2022) 125; e-Print: 2303.03147

Outline:

- Introduction
- Critical temperatures
- Moment of inertia of QGP
- Inhomogeneous phase transitions in QGP
- Conclusion

Rotation of QGP in heavy ion collisions

- QGP is created with non-zero angular momentum in non-central collisions

Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

- $\Omega=\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) \frac{k_{B} T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))
- $\Omega \sim 10 \mathrm{MeV}(v \sim c$ at distances $10-20 \mathrm{fm})$
- Relativistic rotation of QGP

Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s}=200 \mathrm{GeV}$, right $b=7 \mathrm{fm}$,
- $\Omega \sim(4-28) \mathrm{MeV}$
- Relativistic rotation of QGP

Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s}=200 \mathrm{GeV}$, right $b=7 \mathrm{fm}$,
- $\Omega \sim(4-28) \mathrm{MeV}$
- Relativistic rotation of QGP

How relativistic rotation influences QCD?

Study of rotating QGP

- Our aim: study rotating QCD within lattice simulations
- Rotating QCD at thermodynamic equilibrium
- At the equilibrium the system rotates with some Ω
- The study is conducted in the reference frame which rotates with QCD matter
- QCD in external gravitational field
- Boundary conditions are very important!

Details of the simulations

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field
- The metric tensor

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1-r^{2} \Omega^{2} & \Omega y & -\Omega x & 0 \\
\Omega y & -1 & 0 & 0 \\
-\Omega x & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- Geometry of the system: $N_{t} \times N_{z} \times N_{x} \times N_{y}=N_{t} \times N_{z} \times N_{s}^{2}$

Details of the simulations

- Partition function (\hat{H} is conserved)

$$
Z=\operatorname{Tr} \exp [-\beta \hat{H}]=\int D A \exp \left[-S_{G}\right]
$$

- Euclidean action

$$
\begin{gathered}
S_{G}=-\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \sqrt{g_{E}} g_{E}^{\mu \nu} g_{E}^{\alpha \beta} F_{\mu \alpha}^{(a)} F_{\nu \beta(a)} \\
S_{G}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left[\left(1-r^{2} \Omega^{2}\right) F_{x y}^{a} F_{x y}^{a}+\left(1-y^{2} \Omega^{2}\right) F_{x z}^{a} F_{x z}^{a}+\right. \\
+\left(1-x^{2} \Omega^{2}\right) F_{y z}^{a} F_{y z}^{a}++F_{x \tau}^{a} F_{x \tau}^{a}+F_{y \tau}^{a} F_{y \tau}^{a}+F_{z \tau}^{a} F_{z \tau}^{a}- \\
\left.-2 i y \Omega\left(F_{x y}^{a} F_{y \tau}^{a}+F_{x z}^{a} F_{z \tau}^{a}\right)+2 i x \Omega\left(F_{y x}^{a} F_{x \tau}^{a}+F_{y z}^{a} F_{z \tau}^{a}\right)-2 x y \Omega^{2} F_{x z} F_{z y}\right]
\end{gathered}
$$

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

- Rotation effectively heats the system from the rotation axis to the boundaries $T(r)>T(r=0)$

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

- Rotation effectively heats the system from the rotation axis to the boundaries $T(r)>T(r=0)$
- One could expect that rotation decreases the critical temperature

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

- Rotation effectively heats the system from the rotation axis to the boundaries $T(r)>T(r=0)$
- One could expect that rotation decreases the critical temperature
- We use the designation $T=T(r=0)=1 / \beta$

Details of the simulations

Boundary conditions

- Periodic b.c.:
- $U_{x, \mu}=U_{x+N_{i}, \mu}$
- Not appropriate for the field of velocities of rotating body
- Dirichlet b.c.:
- $\left.U_{x, \mu}\right|_{x \in \Gamma}=1,\left.\quad A_{\mu}\right|_{x \in \Gamma}=0$
- Violate Z_{3} symmetry
- Neumann b.c.:
- Outside the volume $U_{P}=1, \quad F_{\mu \nu}=0$
- The dependence on boundary conditions is the property of all approaches
- One can expect that boundary conditions influence our results considerably, but their influence is restricted due to the screening

Details of the simulations

Sign problem

$$
\begin{gathered}
S_{G}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left[\left(1-r^{2} \Omega^{2}\right) F_{x y}^{a} F_{x y}^{a}+\left(1-y^{2} \Omega^{2}\right) F_{x z}^{a} F_{x z}^{a}+\right. \\
+\left(1-x^{2} \Omega^{2}\right) F_{y z}^{a} F_{y z}^{a}++F_{x \tau}^{a} F_{x \tau}^{a}+F_{y \tau}^{a} F_{y \tau}^{a}+F_{z \tau}^{a} F_{z \tau}^{a}- \\
\left.-2 i y \Omega\left(F_{x y}^{a} F_{y \tau}^{a}+F_{x z}^{a} F_{z \tau}^{a}\right)+2 i x \Omega\left(F_{y x}^{a} F_{x \tau}^{a}+F_{y z}^{a} F_{z \tau}^{a}\right)-2 x y \Omega^{2} F_{x z} F_{z y}\right]
\end{gathered}
$$

- The Euclidean action has imaginary part (sign problem)
- Simulations are carried out at imaginary angular velocities $\Omega \rightarrow i \Omega_{I}$
- The results are analytically continued to real angular velocities
- This approach works up to sufficiently large Ω

Details of the simulations: critical temperatures

Confinement/deconfinement phase transition

- Polyakov line

$$
L=\left\langle\operatorname{Tr} \mathcal{T} \exp \left[i g \int_{[0, \beta]} A_{4} d x^{4}\right]\right\rangle
$$

- Susceptibility of the Polyakov line

$$
\left.\chi=N_{s}^{2} N_{z}\left(\left.\langle | L\right|^{2}\right\rangle-\langle | L| \rangle^{2}\right)
$$

- T_{c} is determined from Gaussian fit of the $\chi(T)$

Results of the calculation (Neumann b.c.)

Results of the calculation

- The results can be well described by the formula ($C_{2}>0$)

$$
\frac{T_{c}\left(\Omega_{I}\right)}{T_{c}(0)}=1-C_{2} \Omega_{I}^{2} \Rightarrow \frac{T_{c}(\Omega)}{T_{c}(0)}=1+C_{2} \Omega^{2}
$$

- The critical temperature rises with angular velocity
- The results weakly depend on lattice spacing and the volume in z-direction

Simulation with fermions

- Lattice simulation with Wilson fermions: $m_{\pi} \simeq 700 \mathrm{MeV}$
- Critical couplings of both transitions coincide
- Critical temperatures are increased (at least for $m_{\pi} \simeq 700 \mathrm{MeV}$)

EoS of rotating gluodynamics

- Free energy of rotating QGP

$$
F(T, R, \Omega)=F_{0}(T, R)-\frac{1}{2} I(T, R) \Omega^{2}, \quad I(T, \Omega)=-\frac{1}{\Omega}\left(\frac{\partial F}{\partial \Omega}\right)_{T}
$$

- $I=I_{\text {fluct }}+I_{\text {cond }}$

$$
I_{\text {fluct }}=\ll J_{3}^{2}>_{T}, I_{\text {cond }}=\frac{1}{3} \int d^{3} x r^{2} \ll H^{2} \gg_{T}
$$

- Moment of inertia is related to the scale anomaly in QCD

$$
\ll E^{2}>_{T}+\ll H^{2} \gg_{T} \sim-T_{\mu}^{\mu}
$$

- Instead of $I(T, R)$ we calculate $K_{2}=-\frac{I(T, R)}{F_{0}(T, R) R^{2}}$

Calculation of free energy on the lattice

- $F=-T \log Z$ impossible to calculate on the lattice
$-\frac{\partial F}{\partial \beta} \sim\langle\Delta s(\beta)\rangle=s(\beta)_{T}-s(\beta)_{T=0}, \quad \beta=\frac{6}{g^{2}}$
$-\frac{F(T)}{T^{4}} \sim \int_{\beta_{0}}^{\beta_{1}} d \beta^{\prime}\left\langle\Delta s\left(\beta^{\prime}\right)\right\rangle$

Moment of inertia of gluon plasma

- $I(T, R)=-F_{0}(T, R) K_{2} R^{2}$
- $I<0$ for $T<1.5 T_{c}$ and $I>0$ for $T>1.5 T_{c}$
- Negative moment of inertia indicates a thermodynamic instability of rigid rotation
- The region of $I<0$ is related to magnetic condensate and the scale anomaly
- We believe that the same is true for QCD

Inhomogeneous phase transitions in QGP

- Polyakov loop strongly depends on distance to the rotation axis
- Confinement in the center and deconfinement close to boundary

Inhomogeneous phase transitions in QGP

- Strong inhomogeneity of Polyakov loop close to $\sim T_{c}$
- Weak dependence on distance at large temperatures

Conclusion

- Lattice study of rotating gluodynamics and QCD have been carried out
- Critical temperatures rise with rotation
- We calculated the moment of inertia of GP. It is negative at temperatures $T<1.5 T_{c}$ and positive at larger temperatures
- Negative moment of inertia indicates a thermodynamic instability of rigid rotation
- We observed inhomogeneous phase transitions in GP
- We believe that all observed effects remain in QCD

Conclusion

- Lattice study of rotating gluodynamics and QCD have been carried out
- Critical temperatures rise with rotation
- We calculated the moment of inertia of GP. It is negative at temperatures $T<1.5 T_{c}$ and positive at larger temperatures
- Negative moment of inertia indicates a thermodynamic instability of rigid rotation
- We observed inhomogeneous phase transitions in GP
- We believe that all observed effects remain in QCD

THANK YOU!

