The progress of Super c-tau factory in Russia

IVAN LOGASHENKO

BUDKER INSTITUTE OF NUCLEAR PHYSICS (NOVOSIBIRSK, RUSSIA)

Flavor physics – precise measurement of properties of (heavy) leptons and quarks (CP violation, rare decays, CLFV, magnetic moments,...) – one of key directions for understanding SM and searched beyond SM.

Anomalous magnetic moment of muon

Unitarity triangle

Precision is everything: The higher precision, the higher equivalent energies are reached

Snowmass 2021

"Snowmass" is HEP community forum for discussion of the future of the field (U.S. -> global)

HEP science drivers:

- 1. Use the Higgs Boson as a Tool for Discovery
- 2. Pursue the Physics Associated with Neutrino Mass
- 3. Identify the New Physics of Dark Matter
- 4. Understand Cosmic Acceleration: Dark Energy and Inflation
- 5. Explore the Unknown: New Particles, Interactions, and Physical Principles

6. Flavor physics as a tool for discovery

FERMILAB-CONF-23-008 SLAC-PUB-17717

Report of the 2021 U.S. Community Study on the Future of Particle Physics (Snowmass 2021)

organized by the APS Division of Particles and Fields

Snowmass 2021 Study Conveners: Marina Artuso, Kétévi A. Assamagan, Phillip S. Barbeau, Laura Baudis, Robert Bernstein, Aaron S. Chou, Nathaniel Craig, Csaba Csáki, Aida X. El-Khadra, V. Daniel Elvira, Julia Gonski, Steven Gottlieb, Stephen Gourlay, Jeter Hall, Patrick Huber, Kévin T. Lesko, Petra Merkel, Benjamin Nachman, Meenakshi Narain[†], John L. Orrell, Alexei A. Petrov, Breese Quinn, Fernanda Psihas Tor Raubenheimer, Laura Reina, Kate Schoblerg, Vladimir Shiltsev, Marcelle Soares-Santos, Sara M. Simon, Tim M. P. Tait, Alessandro Tricoli, Elizabeth E. Worcester, Jinlong Zhang

Snowmass 2021 Steering Group: Joel N. Butler, R. Sekhar Chivukula, André de Gouvêa, Tao Han, Young-Kee Kim, Priscilla Cushman, Glennys R. Farrar, Yury G. Kolomensky, Sergei Nagaitsev, Nicolás Yunes

Editorial Committee: Robert H. Bernstein, Sergei Chekanov, Michael E. Peskin

deceased, Jan. 1, 2023.

Colliders-Factories

Energy ranges of high luminosity colliders (factories) correspond to production thresholds of known particles.

Ultimate performance (precision) is determined by luminosity and detector quality

Generations of factories

- There is delicate balance between existing *cτ*-factory and *B*-factories (BES-III, BABAR, BELLE, LHCb)
- Need to keep the same balance for the next generation of colliders

Super $c\tau$ -factory is the natural element of global HEP strategy

Super charm-tau factory

- Super charm-tau factory is e⁺e⁻ collider, dedicated to precision study of properties of charm-quark, tau-lepton, study of strong interactions, search of BSM physics
 - Beam energy from 1.5 to 3.5 GeV
 - Luminosity $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{c}^{-1}$ @ 2.5 GeV
 - Longitudinally polarized electron beam
- Experiments will be conducted using state-ofthe-art general purpose detector
 - Tracking (including low p_t)
 - Calorimetry (high resolution, fast, π^0/γ sep.)
 - Particle ID ($\mu/\pi/K/p$ up to 1.5 GeV/c)

Ivan Logashenko (BINP)

7

Energy range of SCTF

Some key results expected from SCTF

Systematic study of *CP*-violation in decays of *D*-mesons

Lorentz-structure of weak currents in $\tau \rightarrow l \bar{\nu} \nu$

Tetraquark

1200

1000

800

600

400

200

0

Measurement of $\sin^2 \Theta_W$ at J/ψ energy

Super $c\tau$ factory and B factories

The experiments at Super charm-tau factory are complement to experiments at Super KEK-B and LHCb, with unique possibilities:

- Threshold production of particles
- Pair production
- Quantum correlations in $D^0\overline{D}{}^0$ production
- Low multiplicity, full reconstruction of decay chain
- Polarization of electron beam

Physics program: 2022 revision

- 1	•	T 1	0	D	T	\mathbf{O}	п	ТЛ	\mathbf{O}
•			 a	ь.			-		-
			 <u>u</u>			\sim			<u> </u>

Введение						
1	Haj 1.1 1.2	омоний (К.Тодышев) Состояния ниже порол DD Нучение колтических состояний чармония 1.2.1 X-состояния 1.2.2 Y-состояния 1.2.3 Z _c состояния				
2	Спо 2.1 2.2 2.3	ктроскопия состояний из легких кнарков (М.Ачасов) Легкие кварки в квантовой хромодиналиме Модель конституентных кварков Экзотические состояния 2.3.1 Гикония 2.3.2 Гибриды 2.3.3 Многокварковые состояния				
3	Фи: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	 зика <i>D</i>-мезонов (В.Воробьев) Введение Отбор <i>D</i>-мезонов в пороговом эксперименте Спектроскопии <i>D</i>-мезонов Измерение восплотных вероятностей распадов Лептонные и подулентонные распады <i>D</i>-мезонов. Редкие и запрещение распады <i>D</i>-мезонов. Смешивание в системе нейтральных <i>D</i>-мезонов. 3.7.1 Введение 3.7.2 Распады некотерентных состояний 3.7.3 Распады некотерентных пар <i>D</i>. 3.7.4 Аналиды некотерентных пар <i>D</i>. 3.7.4 Аналиды некотерентных пар <i>D</i>. 3.7.4 Аналиды некотерентных состояний 3.7.4 Аналиды некотерентных пар <i>D</i>. 3.7.4 Аналиды некотерентных состояний 3.7.4 Цамиды некотерентных состояний 3.7.4 Аналиды некотерентных пар <i>D</i>. 3.7.4 Аналиды некотерентных состояний 3.7.4 Цамиды некотерентных состояний 3.7.4 Цамиды некотерентных состояний 3.7.4 Цамиды некотерентных распадах <i>D</i> мезонов Измерение сильных фаз с использованием полулентгонных распадов нейтральных каонов. 3.9.1 Измерение сильных фаз с использованием <i>CP</i>-собственного конечного состояния нейтрально каюна. 3.9.3 Оценка потенциальной точности измерения сильных фаз 				
		6				

4	Оча	арованные барионы (Т.Углов)	70			
	4.1	Измерение форм-факторов очарованных барионов	71			
	4.2	Поиск СР-нарушений в распадах очарованных барионов	73			
5	Физика <i>т</i> -лептона (Д.Епифанов)					
	5.1	Введение	75			
	5.2	Свойства т-лептона	76			
		5.2.1 Проверка лептонной универсальности	76			
		5.2.2 Масса т-лептона	77			
		5.2.3 Время жизни т-лептона	78			
		5.2.4 Электрический и магнитный дипольные моменты <i>т</i> -лептона	79			
	5.3	Лептонные распалы 7-лептона	81			
		5.3.1 Обобщенная структура заряженного слабого взаимодействия	81			
		5.3.2 Обычные лептонные распалы 7-лептона	83			
		5.3.3 Радиационные лептонные распады 7-лептона	84			
		5.3.4 Пятичастичные лептонные распады <i>т</i> -лептона	86			
	5.4	Алдонные распалы т-лептона	89			
		5.4.1 $\tau \rightarrow P^- \nu_\tau (P = \pi, K)$	89			
		5.4.2 $\tau^- \rightarrow P^- \nu_\tau \gamma$ is $\tau^- \rightarrow P^- \ell^+ \ell^- \nu_\tau$, $(P = \pi, K; \ell = e, \mu)$	90			
		5.4.3 $\tau^- \to \pi^- \pi^0 \nu_{\tau}$	91			
		5.4.4 Поиск токов второго класса в адронных распадах 7-лептона	92			
		5.4.5 Адронные распады т в состояния с каонами в конечном состоянии	94			
	5.5	CP -нарушение в распадах τ -дептона	97			
	5.6	Нарушение лептонного аромата в распадах 7-лептона	101			
	5.7	Измерение параметров Мишеля в распадах $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$ с распадами мюона				
		на лету (Д. Бодров)	102			
6	Изм	мерение сечения $e^+e^- ightarrow$ адроны	106			
_						
7	дву	ухфотонная физика (В.Дружинин)	110			
8	Пог	иск Новой физики в распадах с-кварка	111			
	8.1	Переходы $c \rightarrow (s, d)l^+\nu_l$	112			
	8.2	Переходы $c \to u l^+ l^-, c \to u \gamma, c \to u \nu \bar{\nu}$	117			
Заключение						

>2021: ≈ 40 pages
>2022: ≈ 120 pages
>Editors:

G.Pakhlova (LPI)
A.Bondar (BINP)

Available at <u>ctd.inp.nsk.su</u>
Shorter (extracted) version prepared as a white paper for

Snowmass

UFN paper is in preparation

Potential location: NCPM, Sarov

- National Center of Physics and Matematics is a new scientific/university center (established in 2021), located near Sarov, the largest nuclear center in Russia.
- > SCTF is discussed as one of the prospective science infrastructures for NCPM.
- The SCTF R&D program is supported at a part of NCPM scientific program (2023-2025).
- SCTF R&D program is realized by informal collaboration of Russian institutions.

R&D program of Super c-tau factory

Collider studies

Achievements (in simulations):

- Optics for all collider elements (final focus, arcs, Siberian snakes, injector,...)
- Optimization of linear and nonlinear structure of collider allowed to reach (with Touschek effect taken into account) beam lifetime, which matches the capacity of the injector
- Positions of CRAB sextupoles are optimized to increase dynamic aperture
- Detailed conceptual project of final focus

Crab waist collision scheme (P.Raimondi 2006)

Critical for all future collider projects

Major problem: dynamic aperture (phase space of stable motion) is reduced due to nonlinear elements

Ivan Logashenko (BINP)

Collider parameters

E, GeV	1.5	2.0	2.5	3.0	3.5		
П, m	m 935.874						
2θ , mrad	θ , mrad 60						
β_x^*/β_y^* , cm	10/0.1						
Q_x/Q_y	30.545/29.61 -64/-328 1.35						
C_x/C_y							
$\alpha \times 10^3$							
$I, A / N_b$	2.9/941	1.64/983	2.5/983	2.7/983	2.9/974		
$N_{p} \times 10^{-10}$	6	3.25	5	5.3	5.8		
$\varepsilon_y/\varepsilon_x$ (%)	10	0.5	0.5	0.5	0.5		
$\varepsilon_x(SR/IBS + WG)$, nm	2/2.9	3.5/3.5	5.5/3.2	7.9/4.1	10.7/5.7		
$\sigma_e \times 10^3 (SR/IBS + WG)$	0.3/0.9	0.4/1.1	0.45/1.2	0.5/1.2	0.6/1.3		
σ_s , mm	17	15	14	14	14		
ξ_x/ξ_y	0.003/0.03	0.002/0.06	0.002/0.08	0.002/0.065	0.002/0.053		
v_s/ξ_x	3	8	6.8	8	8		
$\tau_x/\tau_y/\tau_e$, ms	102/102/51	43/43/22	31/31/15	23/23/11	17/17/9		
$\mathcal{L} \times 10^{-35}, \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.29	0.4	1	1	1		
T_t , s	304	304	302	560	1100		

Final focus

Under consideration: CW at VEPP-4M

There is proposal to make a test of CW at VEPP-4M

What can be tested: final focus elements, nonlinear beam dynamics, beam-beam effects, backgrounds,...

Beneficial for all future collider projects

Under consideration: VEPP-6

- > e^+e^- collider
 - \circ Beam energy from 0.5 to 1.6 GeV (J/ψ)
 - $\,\circ\,$ Luminosity $\mathcal{L}\approx 10^{34}~\mathrm{c}m^{-2}\mathrm{c}^{-1}$ @ 1.6 GeV
- General purpose detector
 - Tracking
 - Calorimetry
 - Particle ID
- Physics

Ο

- \circ J/ψ decays
- Baryon thresholds
- Measurement of R

Complementary to SCTF

...

Detector at SCTF

Momentum resolution $\sigma_p/p \leq 0.4\%$ at 1 GeV

Very symmetric and hermetic

Able to detect soft tracks ($p_t \ge 50 \ MeV/c$)

- \circ Inner tracker should be able to handle 10^4 tracks/cm²s
- Very good particle identification: $e/\mu/\pi/K$
- π/K in the whole energy range, e.g. for $D\overline{D}$ mixing
- $\circ~\mu/\pi$ up to 1.5 GeV, e.g. for $\tau \to \mu \gamma$ search
- dE/dx better than 7%

Able to detect γ from 10 MeV to 3 GeV, good π^0/γ separation

- $\,\circ\,$ Calorimeter energy resolution $\sigma_{\!E}/E \leq 1.8\%$ at 1 GeV
- $\,\circ\,$ Calorimeter time resolution $\sigma_t \leq 1$ ns

Efficient "soft" trigger

Ability to operate at high luminosity, up to 300 kHz at J/ψ

Vacuum pipe Inner tracker 3. Drift chamber PID 5. Calorimeter SC magnet 6. Muon system 5.6 x 5.6 x 5.3 m³

Simulation framework

Aurora Framefork

Release 2.1.0 (December 2022):

Event generators

Geometry, digitization, reconstruction

Parametric simulation

Instrumentation (visualization, tests,..)

Inner tracker options

Compact TPC:

Large number of hits per track
Reliable dE/dx measurement

Length – 60 cm Diameter – 40 cm 5-6 µs electron drift time

Effective track reconstruction at high background rate must be proven

Cylindrical µRWELL:

Modular roof-tile detector

4 layers Length 60 cm Diameter 10-40 cm

Inner tracker: TPC options

Gas volume with HV divider

THE PROGRESS OF SUPER C-TAU FACTORY IN RUSSIA

Drift chamber: BINP option

Drift chamber: prototyping

+ state-of-art simulation of cluster counting readout mode

Calorimeter: pCsl option

7424 crystals, 16 5248 in barrel 2176 in endcap	$\frac{\sigma_E}{E} \approx \frac{1.9\%}{\sqrt[4]{E(GeV)}} \oplus \frac{0.33\%}{\sqrt{E}} \oplus \frac{0.11\%}{E}$	<u>%</u>
5.5 x 5.5 x 30(34	4) cm	
	TBeam June 2023 at the BINP:	-
Basic element:	CBS gammas were used for energy resolution calibration:	2001 - 100
pCsI crystal +	Two laser modes: 527 nm & 1064 nm	
WLS +	Five beam energies:	
4 APD	1.9, 2.5, 4.5, 4.75 GeV	22.1
	64, 111, 225, 361, 402, 441, 730, 812 MeV	This of

This option is being prototyped and optimized

PID

Requirements for PID system

 π/K separation > 4σ up to 2.5-3.5 GeV/c TOF (BES-3): 3σ at 0.9 GeV/c, DIRC (BaBar): 4σ at 2.5 GeV/c ASHIPH (KEDR): 4σ at 1.5 GeV/c

 u/π suppression <1/40 for to 0 E

 μ/π suppression <1/40 for to 0.5-1.2 GeV/c

good μ/π separation at low momentum

Several option are being considered:

FARICH, ASHIPH, TOF, FDIRC

Simulations, studies with prototypes using test beams

Summary

- There is rich physics program of experiments at Super c-tau factory
- Super c-tau factory is deeply integrated in the global landscape of particle physics
- The conceptual design is ready and is regularly updated
- There is wide program of R&D studies realized by collaboration of BINP, VNIIEF (NCPM) and other institutions

Moving towards technical design