Centrality Dependence of $\gamma^{\rm dir}$ and π^0 Production in d+Au Collisions

21th Lomonosov Conference

Nour Jalal Abdulameer

Aug 29, 2023

Debrecen University & PHENIX Collaboration

1. Introduction and the PHENIX Experiment

2. Centrality Determination and Correcting Biases

3. Insights and Future Directions

Introduction and the PHENIX Experiment

Introduction

• The PHENIX experiment pioneered measurements of nuclear modification factor $R_{AB}(p_t)$ of π^0 and γ , providing strong evidence of the formation of Quark-Gluon Plasma (QGP) • In small systems high p_T neutral hadrons are seen to be suppressed in central events , while enhanced in peripheral events.

• We study high $p_T \gamma^{dir}$ and π^0 production in d+Au collisions to prove that biases in centrality determination using the standard Glauber model can be corrected by defining binary collisions using high p_T real photons.

3/4(PbSc): lead-scintillator sandwich sampling calorimeter, 1/4(PbGl): lead glass homogenous Cherenkov radiator.

PHENIX Experiment at RHIC

The PHENIX experiment at RHIC (BNL) took data 2000-2016 with various ion beams and collision energies. The primary goal of the PHENIX Electromagnetic Calorimeter (EMCal) is to identify photons and electrons and measure their energy and position of impact on the surface of the EMCal and to search for new phenomena such as the guark-gluon plasma in heavy ion collisions. It is also contributes to particle identification (PID).

3D PHENIX detector

$\gamma^{\it dir}$ and $\pi^{\rm 0}$ Invariant Yields and Nuclear Modification Factor

- Invariant yield of π^0 s is measured at $|\eta| < 0.35$ from the $\pi^0 \to \gamma \gamma$ decay channel.
- Invariant yield of direct γ s at $|\eta| < 0.35$ obtained by subtracting decay γ from inclusive photons and correcting with simulation at $\sqrt{s} = 200 \text{ GeV}$.
- High $p_T \gamma^{dir}$ generated during initial hard scattering are colorless and less affected by the surrounding medium (see the figure). Using them helps measure N_{coll} without bias.
- The ratio $\frac{\gamma^{dir}}{\pi^0}$ shows how π^0 centrality dependence might result from N_{coll} determination bias across centralities.

$\pi^{\scriptscriptstyle 0}$ in small system collisions

QGP Evidence and Importance

• Energy loss of partons in the QGP is revealed by high-momentum particles using hard parton scattering. At low p_T , the QGP's cooling and expansion manifests itself in azimuthal asymmetry of produced hadrons.

• Particles emitted at the end of a collision provide information on the QGP, temperatures, and initial conditions.

 $v_2: p+Au < d+Au \approx 3He+Au$, $v_3: p+Au \approx d+Au < 3He+Au$

Centrality Determination and Correcting Biases

Centrality Concept

The event is defined by the overlap area, centrality(0-100%) quantifies the overlap, which dictates the participating nuclei count (N_{part}) and collisions (N_{coll}) . These aspects shape the QGP size and event multiplicity. The overlap's orientation important because it govern the angular distribution of underlying event particles.

"
Two colliding nuclei with small and large impact parameters. The nucleons in red are the participants and those in grev are the spectators

impact parameter (b

depiction of how the geometry of collision affects

the momentum anisotropy of final state particles

0% - 88%

 7.59 ± 0.5

(Nnart)

 9.1 ± 0.4

Standard Glauber model and normalizing with $\gamma^{\it dir}$

- Au+Au: Clear centrality dependence. The centrality dependence of π^0 is from final state effect.
- d+Au: First order, NO clear centrality dependence. The centrality dependence of π^0 is from bias in determination of N_{coll} in different centrality's.
- $N_{Expcoll}$ is dividing the invariant yield obtained in d+Au collisions over p+p collisions. Percentage difference between $N_{glaubercoll}$ and $N_{Expcoll}$.

Glauber Model Approach Mapping Forward Charged Particles to Event's Binary Collisions.

Correcting Biases with Color-Free Photon Production

- $R_{dAuExp}^{\pi^0}$ Does not show any improvement in peripheral collisions after bias correction.
- The correcting Centrality Biases via Photon-Based Binary Collisions $N_{coll}^{exp} = \frac{\gamma_{xAu}^{dir}}{\gamma_{pp}^{dir}}$ • To determine whether the observed suppression is an initial or final state effect, one must understand the mechanism of π^0 and γ^{dir} .

- Observed supression in central collisions remains even after correcting for bias in Ncoll determination.
- Observed enhancement in peripheral collisions is an artifact of bias in the Ncoll determination using Glauber model for small systems

Insights and Future Directions

Bias from the Glauber model is evaluated using γ_{dir}

- determine scaling factor (N_{coll}) from the $\frac{\gamma_{dAu}^{dir}}{\gamma_{pp}^{dir}}$. • Independent of p_T for 7.5 to 18 GeV/c.
- Good agreement in central collisions within 5%, 15% deviation in peripheral collisions.
- Bias in event selection: Event activity reduced in presence of hard scattering.

Nuclear Modification Factor (R_{dAu}) of π^0 and γ^{dir}

Conclusion & Future Directions

- Using direct photons to determine N_{coll} bias in the Glauber model for peripheral events.
- Experimentally determined N_{coll} with high $p_T \gamma^{dir}$.
- Further insight on the centrality bias's origin will be provided by further study of the p+Au and ³He+Au systems.
- Indications that most central $R_{dAu}^{\pi^0}$ is suppressed.
- γ^{dir} are used to normalize R_{dAu} of π^0 .
- Suppression in the extreme central events is around 15%.
- Models examining the initial state effect on the production of π^0 and γ^{dir} will shine light on the origin of the observed suppression.

THANK YOU FOR YOUR ATTENTION

This Work is Supported by the OTKA 131991

Nour J.A · 21th Lomonosov Conference | Insights and Future Directions · 12/12