Performance studies towards flow measurements in BM@N

Mikhail Mamaev (MEPhI, INR RAS) Petr Parfenov (MEPhI, INR DVA) Arkady Taranenko (MEPhI, JINR)

This work is supported by: the Special Purpose Funding Programme within the NICA Megascience Project in 2023 and the RSF grant No. 22-12-00132

Lomonosov Conference, 29/08/2023

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$arphi(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$
Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

Discrepancy is probably due to non-flow correlations

Describing the high-density matter using the mean field Flow measurements constrain the mean field

dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

Simulation datasample

- Xe+Cs nuclei collisions
- DCMQGSM-SMM model (realistic yields of spectator fragments), describes flow poorly
- JAM model (realistic flow signal)
- Geant4 transport code (important for simulation of hadronic showers in the forward calorimeter)

	2A GeV	3A GeV	4A GeV
DCMQGSM-SMM	6M	6M	2M
JAM MD2	3M	3M	5M

The BM@N experiment (GEANT4 simulation for RUN8)

L1 tracking was used together with true-MC PID

Symmetry plane estimation with the azimuthal asymmetry of projectile spector energy

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n = e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCall Tp: p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff T π : π -; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff T-: all negative; 1.0< η <2.0; 0.1 < p_T < 0.5 GeV/c; w=1/eff⁷

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

SP R1: DCMQGCM-SMM Xe+Cs@4A GeV

SP gives unbiased estimation of v_n (root-mean-square) EP gives biased estimation (somewhere between mean and RMS)

Using the additional sub-events from tracking provides a robust combination to calculate resolution ¹⁰

Resolution is lower for higher energies due to lower v_1

Directed and elliptic flow in Xe+Cs (JAM)

Good agreement between reconstructed and pure model data for all three energies

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_T > 0.2 GeV/c

Summary

- Resolution correction factor is calculated for DCMQGSM-SMM Xe+Cs collisions at beam energies of 4A, 3A and 2A GeV:
 - Using only FHCal sub-events for resolution calculation gives biased estimation due to transverse hadronic showers propagation
 - Using additional sub-events from tracking provides with a robust estimation
- Good agreement between model and reconstructed data is observed for v_1 and v_2 at 2A, 3A and 4A GeV
- The analysis of the recent BM@N experimental run is ongoing:
 - The R₁ calculated using different combinations of Q-vectors is consistent within the statistical errors

BACKUP

- All the methods used for performance study were carried out using QnTools framework: <u>https://github.com/HeavyIonAnalysis/QnTools</u> (well documented and well-tested)
- Methods for flow measurements in fixed-target experiments were tested on experimental data from NA61/SHINE, HADES and ALICE
- Tested and implemented in MPD root