Measurement of π0 yield in Ag+Ag collisions at 1.23 A GeV beam energy

Arseniy Shabanov

29.08.2023 Lomonosov conference

Moscow

Outline

- HADES experiment
- ECal detector
- Measurement of π° yield

HADES experiment

- Fixed target experiment at SIS18,
- Darmstadt
- Covers full azimutal angle and
- $18^{\circ} < \theta < 85^{\circ}$ polar angle
- Tracking system
- Time-of-flight system
- Ring imaging Cherenkov detector
- Electromagnetic calorimeter ECal
- Forward hodoscope

6 sectors covering $12^{\circ} < \theta < 45^{\circ}$

ECal detector

- 978 modules
- Homogeneous Cherenkov radiator is made of lead glass CEREN25 (16.7 radiation length long)
- PMT: Hamamatsu R6091 (3")

Analyzed data

- March 2019
- Ag + Ag at 1.23 A GeV
- 7 * 10⁸ events

Selection criteria

Selection of events

centrality 0-30% (from TOF+RPC multiplicity)

Photon:

- No hit in RPC (closest detector to ECal)
- No match with any track
- 0.9 < β < 1.1
- E > 100 MeV (reject neutrons)

Diphoton:

Opening angle > 10°

Reconstruction of π^0 -mesons

All – experimental data CB – mixed-event combinatorial background Sig – signal Signal is fitted with Gauss

$$n_{\pi^0} = \sqrt{E_1 \cdot E_2 \cdot (1 - \cos \theta)}$$

0.9 < y < 1.1

9

Acceptance corrections

Acceptance corrections

UrQMD generated number of pions within pt-y bin per event

Reconstructed from simulation number of pions within pt-y bin per event

1.5

1.6

1.8 1.9

1.2 1.3

Efficiency corrections

π^o yield depending on transverse momentum and rapidity

 $1/N_{events} \cdot dN_{\pi^{\circ}} / dp_t \cdot dy$ in each pt – y bin

Systematic uncertainty study

Energy cut	100 MeV	150 MeV	200 MeV	250 MeV	• 0.6%
Angle cut	6 deg	10 deg	15 deg		• 3%
Beta cut	1σ	1.5 σ	2 σ	3σ	• 13.8%
RPC time cut	1σ	1.5 σ	2 σ		• 0.7%
RPC coordinate cut	2 σ	3 σ			• 1%
Cluster size cut	1	2	3		• 0.5%

Relative Uncertainties of measured yields

Uncertainties / N pions in each pt – y bin

Extrapolation of dN/dpt distribution

$$\frac{d^2N}{dp_t dy} \propto p_t m_t \cosh y \exp\Big(-\frac{m_t \cosh y}{T}\Big).$$

$$m_t = \sqrt{p_t^2 - m^2}$$

Extrapolation to p_t range which is not covered by acceptance of ECal:

$$\frac{dN}{dp_t} = C p_t m_t e^{-\frac{m_t}{T}}$$

(Boltzmann fit)

Extrapolation of dN/dy distribution

Integration of dN / dp_t \cdot dy over p_t =>

It can be approximated as Gauss function:

$$\frac{dN}{dy} \propto \exp\left(-\frac{y^2}{2\sigma^2}\right) \qquad \sigma = \sqrt{T/m_0}$$

$$\frac{dN}{dy} = CT \exp\left(-\frac{m_{\pi^0} \cosh y}{T}\right) \left(m^2_{\pi^0} + 2m_{\pi^0} \frac{T}{\cosh y} + 2\frac{T^2}{\cosh^2 y}\right)$$

0-10%, 10-20%, 20-30% centrality

π° production yield

centrality	N π° / N events	N participants	M π° / (N participants \cdot N events)
0-10%	6.42 +- 0.20 _{stat} +- 1.28 _{syst}	163.4	(3.93 +- 0.12 _{stat} +- 0.79 _{syst}) * 10 ⁻³
10-20%	4.55 +- 0.15 _{stat} +- 0.91 _{syst}	113.3	(4.01 +- 0.13 _{stat} +- 0.80 _{syst}) * 10 ⁻³
20-30%	3.08 +- 0.12 _{stat} +- 0.616 _{syst}	77.9	$(3.95 + 0.16_{stat} + 0.79_{syst}) * 10^{-3}$

Comparisson to the world data

Charged pions

dN/dy

centrality	1/2 (Mπ⁺ + Mπ⁻)
0-10%	7.60 * 10 ⁻³
10-20%	7.65 * 10 ⁻³
20-30%	7.83 * 10 ⁻³

0-10%, 10-20%, 20-30% centrality

Conclusions

- π° yield is measured in Ag+Ag collisions at 1.23 A GeV beam energy
- The measured yield is lower compared to charged pion production and to the known world data
- Efficiency of the detector must be studied more carefully

Thank you for your attention !