

First physics results from the FASER experiment

Svetlana Vasina, JINR, Dubna, Russia

21th Lomonosov Conference on Elementary Particle Physics

August 24-30 2023, Moscow, Russia

ForwArd Search ExpeRiment idea

FASER is designed to compliment the LHC programme:

- LHC Run 3 expected integrated luminosity >150 fb⁻¹
- O(10¹⁶) inelastic p-p scattering events is expected
- **Long-lived particles (LLP) with TeV energies** potentially can be produced in ATLAS interaction point (IP)

pp→LLP+X, LLP → e+e-, μ + μ -, π + π -, $\gamma\gamma$, ...

- Located in TI12 tunnel unused one, the beam collision axis passes along the tunnel floor
- \sim 480 m away from the ATLAS IP
- In the SM, only muons and neutrinos can reach detector. LLPs can decay in FASER.

Detector

Transverse size is limited by the tunnel and trench constraints, detector must be centred on the LOS to within ~ 10 cm to maximise number of LLP decays and neutrino interactions

Signatures of the Dark Sector particles and neutrinos are quite different

To fullfil physics program complex detector is needed which satisfy to strict requirements on positional 3 resolution, precision of energy and momentum measurement, particles identification

Detector operation

- March 2021 installed, cosmic data taking
- July 2022 physics data taking started
- Smoothly operated in 2022
 - Continuous data taking
 - Largely automated
 - Up to 1.3 kHz trigger rate
 - More than 350 x 10⁶ single muon events recorded
- Recorded 96.1% of delivered luminosity
 - DAQ dead-time of 1.3%
 - A couple of DAQ crashes
- Emulsion detector exchanged twice
 - Needed to manage the occupancy
 - First box only partially filled
- Calorimeter gain optimised
 - Low E (< 300 GeV) before 2nd exchange
 - High E (up to 3 TeV) after the exchange
- Smoothly operating in 2023
 - Another ~30 fb⁻¹ data

- Dark photon is a hypothetical particle belonging to Dark Sector (DS)
- Produced in light mesons decays, through dark bremsstrahlung etc.

- Huge number of light mesons with TeV energies are concentrated in the very forward direction in the FASER angular acceptance, O(10¹⁵)
- Significant discovery potential with >150 fb⁻¹ expected in Run 3
 - Simple event selection optimised for discovery
 - Signal selection ~40% of region of sensitivity

Background sources estimated for 27 $\rm fb^{\text{-1}}$

Neutrino interactions (dominant)

- Mainly coming from interactions in timing detector
- Estimated from GENIE simulation of 300 ab⁻¹ data
- Uncertainties from neutrino flux and interactions modeling
- Predicted events with $E_{calo} > 500 \text{ GeV}$

(1.5 ± 0.5 (stat.) ± 1.9 (syst.)) $\times 10^{-3}$

Neutral hadrons

- From muons interacting in rock in front of FASER
- Heavily suppressed
 - by the need to pass through 8 interactions lengths
 - by the need for the parent muon to scatter to miss the veto scintillators
 - Decay products have to leave $E_{calo} > 500 \text{ GeV}$
- Data-driven estimation

Other negligible:

Veto inefficiency

- Measured layer-by-layer via muons with tracks pointing back to vetos
- Layer efficiency > 99.999%

Large-Angle muons

Non-collision events

- Cosmics measured in runs with no beam
- Near-by beam background measurement in non-colliding bunches

Total background of (2.3 \pm 2.3) \times 10⁻³ events

Unblinded results

No events in signal region

No event in unblinded SR

- FASER sets limits in previously unexplored parameter space !
- Probes new territory in the interesting thermal-relic region
- Results reinterpreted in terms of B-L model

arxiv:2308.05587[hep-ex]

Neutrino physics

- Huge number of neutrinos from LHC collisions products decays are expected to pass through the FASER location in unexplored energy regime
- 1.1 tn emulsion/Tungsted detector, FASER ν , is placed to register neutrinos of all flavours

Expect to register in LHC Run 3 $\sim 1000 \nu_{e}$, $\sim 10000 \nu_{\mu}$, 50 ν_{τ}

- The goal is neutrino cross section measurement at high energies
- Neutrino energy resolution of $\sim 30\%$ is expected from the simulation

Expectation for 150 fb⁻¹

First direct observation of collider neutrinos

First study was focused on v_{μ} CC interactions at FASER ν with silicon tracker data usage done for 35.4 fb⁻¹

Background estimation

Neutral hadrons — 0.11 ± 0.06 events Muon scattering — 0.08 ± 1.83 events Veto inefficiency — negligible

Expected signal

151±41 events Uncertainty from DPMJET and SIBYLL

First direct observation of collider neutrinos

- Observed **153** events with 0.2 background
- Consistent with prediction: 151 ± 41
- Significance of **16**

Candidate neutrino events match expectation of signal Most events have high momentum muon More $\boldsymbol{\nu}_{u}$ than anti- $\boldsymbol{\nu}_{u}$

Opening a new window for neutrino study

no systematic uncertainties included

FASERV

- 1m x 30 cm x 25 cm, 1.1 tn
- 730 of 1.1 mm thick tungsten plates interleaved with emulsion films
- Emulsion has excellent space/angular resolution
- Allow to distinguish all neutrino flavours

Detector has to be replaced each 30-50 fb^{-1.} Replaced during technical stops during LHC run to have managable track density.

	Installed period	load	Integrated luminosity per module (fb ⁻¹)	Event selection Event selection start
2021 1st module	Mar 15 — Jul 26	• 30%	0.4705	Vertexing with tracks
2022 2nd module	Jul 26 – Sep 13	• 100%	9.523	with $nseg \ge 3$, $ip < 5 \ \mu m$
2022 3rd module	Sep 13 — Nov 29	• 100%	28.9082	$N_{track} \geq 5?$ &&

Analysis strategy

- 250/730 films zones 3+4 of 2^{nd} module
- 150 films for vertex reconstruction and 100 films for E/p estimation
- Select $\boldsymbol{\nu}_{e}$ and $\boldsymbol{\nu}_{\mu}$ with p_{lep} >200 GeV/c

Muon momentum

Reconstruction by measurement of segments positions

Electron energy

Reconstruction by number of segments around shower maximum Resolution ~25%

Event classification

Located verteces sample is dominated by neutral hadron interactions (K_s, K_L, n, Λ) before the high-energy selection.

Expectation from simulation 216 vertices

> Data

133 vertices (140 with 7 ν CC candidates)

First direct observation of $\boldsymbol{\nu}_{e}$ **CC interactions at the LHC** 16

Summary

- FASER is successfully taking data in LHC Run3
 - Detector operated well and collected \sim 37 fb⁻¹ of data in 2022 and \sim 30 fb⁻¹ in 2023
- Excluded A' in region of low mass and kinetic mixing
 - Probes new territory in the interesting thermal-relic region
 - More studies are in progress ALPs, new A' search
- Observed ~153 $\boldsymbol{\nu}_{\mu}$ CC interactions at the LHC by electronic detectors
 - First direct detection of collider neutrinos!

arxiv:2308.05587[hep-ex]

10.1103/PhysRevLett.131.031801

- Opens new window for high-energy *v* studies
- New results on neutrinos from FASER ν distinguishing ${\pmb \nu}_e$ CC and ${\pmb \nu}_\mu$ CC interaction candidate
 - First direct detection of $\nu_{\rm e}$ CC at the LHC at the highest energy ever observed
 - More measurements to come including high energy $D_{\tau_{r}}$ cross sections measurement

FASER and FASER ν are supported by:

_

Thank you for attention!

BACKUP SLIDES

References

- 1. Search for Dark Photons with the FASER detector at the LHC arXiv:2308.05587[hep-ex]
- 2. First Direct Observation of Collider Neutrinos with FASER at the LHC

Physical Review Letters and arXiv:2303.14285v2[hep-ex]

- 3. The FASER Detector arXiv: 2207.11427
- 4. The FASER W-Si High Precision Preshower Technical Proposal CERN document server
- 5. The tracking detector of the FASER experiment NIMA 166825 (2022) and arXiv: 2112.01116
- 6. The trigger and data acquisition system of the FASER experiment

Journal of Instrumentation and arXiv: 2110.15186

- 7. First neutrino interaction candidates at the LHC Physical Review D and arXiv: 2105.06197
- 8. Technical Proposal of FASER_v neutrino detector CERN document server and arXiv: 2001.03073
- 9. Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC European Physical Journal C and arXiv: 1908.02310
- 10. FASER's Physics Reach for Long-Lived Particles Physical Review D and arXiv: 1811.12522
- 11. Technical Proposal CERN document server and arXiv: 1812.09139
- 12. Letter of Intent CERN document server and arXiv: 1811.10243

Detector installation

FASER was installed into TI12 in March 2021 and started cosmic data taking

Physics data taking started in July 2022

37 fb⁻¹ of the data has been collected in 2022 In 2023 another ~30 fb⁻¹ of the data

The floor was lower ~ 45 cm at the front of detector to install detector along the beam collosion axis

Tracker spectrometer and IFT

tracking spectrometer (3 tracking stations) + IFT (1 tracking station) after FASER ν

Tracker Station

NIMA 166825 (2022)

- The total number of dead channels was measured ${\sim}0.5\%$
- Hit efficiency above 99.8% was confirmed in the 2021 test beam at the H2 beamline at the CERN-SPS

Component	Material	Number	X ₀ (%)		
		/ station	Central region	Edge region	
Silicon sensor	Si	6	1.8%	1.8%	
Station Covers	CFRP	2	0.3%	0.3%	
SCT module support	TPG	3	-	0.6%	
C-C Hybrid	C (based)	3	-	2.2%	
ABCD chips	Si	3	-	6.5%	
Layer frame	Al	3	-	10.1%	
Total / station	-	-	2.1%	21.5%	

Calorimeter and scintillators

- 4 scintillator stations with multiple layers per each station
 - Data driven veto efficiency measurement. Each scintillator efficiency >99.99%
 - Efficiency of 4 scintillator combined veto O(10⁸) muons expected in Run 3
- EM calorimeter made of spare LHCb modules
 - 66 layers of lead-scintillator plates read by 2x2 array of PMTs
 - Calorimeter readout optimised to measure multi-TeV deposits w/o saturation

FASER detector performance

- Data driven veto efficiency measurement. Each scintillator efficiency >99.99%
- Efficiency of 4 scintillator combined veto O(10⁸) muons expected in Run 3
- Calorimeter energy resolution measured with electrons in test beam – as expected resolution O(1%) at high energy.
- Tracker hit efficiency measured in data to be >99.6% as expected

Trigger and DAQ

The maximum trigger rate is ~ 1.2 kHz (nearly 2x the expectation)

- Trigger signal provided by PMTs from scintillators and calorimeter
- Trigger system run synchronously to the 40.8 MHz LHC clock
- DAQ: configuration and readout
- Monitoring: check data flow, detector conditions, data quality

FASERv simulation

Yellow line segments show the trajectories of charged particles in the emulsion films. The other colored lines are interpolations, and the colors change depending on the depth in the detector.

Generators		$FASER\nu$			SND@LHC			
light hadrons	heavy hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu} $	$ u_{ au} + ar{ u}_{ au}$	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \bar{\nu}_{\mu} $	$ u_{ au} + ar{ u}_{ au}$	
SIBYLL	SIBYLL	1501	7971	24.5	223	1316	12.6	
DPMJET	DPMJET	5761	11813	161	658	1723	31	
EPOSLHC	Pythia8 (Hard)	2521	9841	57	445	1871	19.2	
QGSJET	Pythia8 (Soft)	1616	8918	26.8	308	1691	12	
Combination (all)		2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5_{-43}^{+94}	408^{+248}_{-185}	$1651\substack{+220 \\ -333}$	$18.8^{+12}_{-6.6}$	
Combination (w/o DPMJET)		1880^{+641}_{-378}	8910^{+930}_{-938}	$36^{+20.8}_{-11.5}$	325^{+118}_{-101}	$1626\substack{+243 \\ -308}$	$14.6^{+4.5}_{-2.5}$	

Expected number of CC neutrino interaction events occurring in FASER ν and SND@LHC during LHC Run 3 with 250 fb⁻¹ integrated luminosity. Predictions from different MC generators are provided.

Test Beam 2018

- Pilot neutrino detector with 10 kg target was exposed in FASER location during 2018 LHC run to validate background simulation
- 12.2 fb⁻¹ data collected during ~1 month, 18 neutral vertices are found
- BDT is used for signal/background separation. Best fit value of 6.1 neutrino interactions (3.3 expected) at 2.7 σ significance

First candidate collider neutrino interactions!

FASER*v*: efficiencies

Breakdown of the efficiencies

Selection	$\nu_e \ CC$	ν NC	K_L	n	Λ
	1.000	1.000	1.000	1.000	1.000
Vertex reconstruction	0.516	0.336	0.813	0.803	0.753
E>200 GeV	0.340	0.001	0.000	0.000	0.000
$E>$ 200 GeV, tan $\theta>$ 0.005	0.270	0.001	0.000	0.000	0.000
$E>\!\!200$ GeV, tan $\!\theta>\!\!0.005.~\Delta\phi\!\!>\!\!90\mathrm{deg}$	0.226	0.000	0.000	0.000	0.000

Selection	$ u_{\mu}$ CC	$\nu \ {\rm NC}$	K_L	n	Λ
	1.000	1.000	1.000	1.000	1.000
Vertex reconstruction	0.446	0.336	0.813	0.803	0.753
p>200 GeV	0.284	0.071	0.028	0.026	0.018
p>200 GeV, tan $ heta>$ 0.005	0.236	0.051	0.007	0.013	0.007
$p>\!\!200$ GeV, $\tan\!\theta>\!\!0.005.~\Delta\phi\!\!>\!\!90\mathrm{deg}$	0.192	0.004	0.002	0.006	0.004

FASERv: data/MC comparison

FASERv neutrino candidates

FPF

- In order to take maximum advantage of the physics in the very forward region of the LHC collisions in the HL-LHC era we need to increase the experimental capabilities
- The FASER location does not allow to install new or larger detectors on the LOS
- The Forward Physics Facility (FPF) is a proposal to create a new facility to enable a suite of new experiments to be situated on the LOS
- FTF motivations: BSM «dark sector» search, neutrino physics, QCD physics
- O(10⁶) mu,O(10⁵) electron and O(10³) tau neutrino interactions expected in O(10tn) detector

arXiv:2203.05090

FASER2 vs FASER

Benchmark Model	FASER	FASER 2
Dark Photons	\checkmark	\checkmark
B-L Gauge Bosons	\checkmark	\checkmark
$L_i - L_j$ Gauge Bosons		
Dark Higgs Bosons		\checkmark
Dark Higgs Bosons with hSS		\checkmark
HNLs with e		\checkmark
HNLs with μ		\checkmark
HNLs with τ	\checkmark	\checkmark
ALPs with Photon	\checkmark	\checkmark
ALPs with Fermion		\checkmark
ALPs with Gluon	\checkmark	\checkmark
Dark Pseudoscalars		\checkmark

32