

TWENTY-FIRST LOMONOSOV CONFERENCE August, 24-30, 2023 ON ELEMENTARY PARTICLE PHYSICS MOSCOW STATE UNIVERSITY

Dark matter searches at CMS

Maria Savina, JINR, Dubna

on behalf of the CMS Collaboration

Maria.Savina@cern.ch

p

Talk outline

Simplified dark matter models: DM portals (DM particles + mediators, "simplified models" of DM/SM interaction)

✓ <u>Prompt DM production</u>:

CMS HIG-21-007 – invisible Higgs decay CMS PAS HIG-22-003 – exotic Higgs decays into a Za(a→ 2 gamma) CMS PAS EXO-21-005 – prompt GeV-scale dimuon resonance CMS EXO-19-020, JHEP 06 (2022) 156 – resonant production of strongly coupled DM with semivisible jets CMS PAS EXO-21-012 – DM production with a WW pair

✓ <u>LLP signatures:</u>

CMS PAS EXO-21-008 – long lived decays in the muon system CMS EXO-20-010 – inelastic dark matter with two displaced muons

✓ Summary and outlook

M. Savina, JINR, Russia

DM portals: DM particle(s) + mediator(s)

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Prompt DM signatures, examples (see backup for a full list):

 ✓ <u>fully visible (a new resonance</u> in dijet/dilepton/diboson etc. spectra)

✓ <u>non-standard properties</u> of SM particles (higgs sector – higgs boson pair production, h_{125} to invisible...)

<u>MET</u> - decay to DM particle pair
 (+ a visible "tag" X(=jet/gamma/Z/H)

Combination of $h_{125} \rightarrow$ invisible searches for ttbar and VH

M. Savina, JINR, Russia

CMS

The 21th Lomonosov Conference

Combination of $h_{125} \rightarrow$ invisible searches

CMS HIG-21-007 ATLAS HIGG-2021-05

ATLAS: BR(H→inv.) < 10.7% (7.7% expected)

M. Savina, JINR, Russia

CMS

The 21th Lomonosov Conference

29.08.2023

Exotic higgs decays $h \rightarrow Za, Z \rightarrow ll, a \rightarrow 2$ gamma

CMS PAS HIG-22-003

The first search of such type for axion-like particles (ALPs) at the LHC. Pseudoscalar portal, the light enough ALP, Z^o-ALPs interactions

C_i are Wilson coefficients in the EFT approach that describe the ALP/SM couplings

$$\mathcal{L}_{EFT} = \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{i}^{(7)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Exotic higgs decays $h \rightarrow Za, Z \rightarrow ll, a \rightarrow 2$ gamma

CMS PAS HIG-22-003

The first search of such type for axion-like particles (ALPs) at the LHC. Pseudoscalar portal, the light enough ALP, Z^o-ALPs interactions

C_i are Wilson coefficients in the EFT approach that describe the ALP/SM couplings

$$\mathcal{L}_{EFT} = \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{i}^{(7)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

M. Savina, JINR, Russia

The 21th Lomonosov Conference

Exotic higgs decays $h \rightarrow Za, Z \rightarrow ll, a \rightarrow 2$ gamma

CMS PAS HIG-22-003

Limit on $C_{\rm ZH}^{\rm eff}/\Lambda$, when ALP decays

exclusively in a diphoton, Λ is large

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Resonant production of strongly coupled DM for semivisible jets

Hidden valley concept, hidden sector, new non-abelian symmetries in DS, strongly interacting DM ("dark QCD"), vector mediator Z'. A large-scale suppression of SM/DM interactions, "semivisible" jet substructure

JHEP 06 (2022) 156 CMS EXO-19-020

M. Savina, JINR, Russia

The 21th Lomonosov Conference

Resonant production of strongly coupled DM for semivisible jets

The first CMS study of jet ivsisible contribution with dark sector I nterpretation. The fraction r_{inv} of stable invisible dark hadrons in between 0 (dijet, small MET) and 1 (large MET)

JHEP 06 (2022) 156 CMS EXO-19-020

See also backup for LLP dark showers – emerging jet signature

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Z'

 W^{-}

m

 W^+

W

W

Z'

Dark Higgs model, resolved decay of $s(W^+W^-) + E_T^{miss}$

- ✓ A new higgs state is weakly mixed with SM h, a new U(1)' → SSB(s) → massive Z'_V coupled to quarks only
- ✓ s → W⁺W⁻ decay dominates at large s mass values

Model parameters :
$$m_s$$
, $m_{Z'}$, m_{χ} , g_q , g_{χ} , $sin heta$ (h–s mix.)

$$m_{\rm T}^{\ell\min,p_{\rm T}^{\rm miss}} = \sqrt{2p_{\rm T}^{\ell\min}p_{\rm T}^{\rm miss}\left[1 - \cos\Delta\phi(\vec{p}_{\rm T}^{\ell\min},\vec{p}_{\rm T}^{\rm miss})\right]}$$

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

CMS

Dark Higgs model, resolved decay of $s(W^+W^-) + E_T^{miss}$

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

M. Savina, JINR, Russia

The 21th Lomonosov Conference

Search for prompt GeV-scale dimuon resonance

minimal dark photon model and
 light scalar decay to dimuon (2HDM+S) interpretations

See also backup for Higgs \rightarrow displaced muon pair analyses,

CMS PAS EXP-21-005

CMS PAS EXO-20-014

29.08.2023

14/27

CMS Preliminary 96.6 fb⁻¹ (13 TeV) $sin(\theta_H)$ 10⁻¹ **BaBar** CMS Type IV 2HDM+S model 10⁻² tanβ=0.5 LHCb 2 3 5 6 4 m_a [GeV

M. Savina, JINK, Kussia

Dark sector with Long-Lived Particles at the LHC

LLP:

a proper lifetime $c\tau_o$ is greater than or comparable to the characteristic size of the (sub)detectors

 ✓ small cτ₀ that comparable to the inner tracker size, no displaced tracks →
 "standard" prompt decay

✓ intermediate $c\tau_o$ → LLP

✓ very large/infinite large $c\tau_0$ → stable particles, "standard" MET signatures

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497

LLP White Paper: arXiv:1903.04497

LLP theory motivations: arXiv:1806.07396

displaced jets

15/27

M. Savina, JINR, Russia

The 21th Lomonosov Conference

LLP decays in the CMS Muon system

CMS PAS EXO-21-008

- A unique technique for LLP decays reconstruction in the muon system
- Sensitivity to long lived scalars with masses between 0.4 and 55 GeV
- > Decays in hadronic showers (bbbar, ddbar, K⁺K⁻, K^oK^o, 2π , 2τ , 2γ etc.)
- Interpretations for dark showers and twin Higgs models

LLP decays in the CMS Muon system

CMS PAS EXO-21-008

- A unique technique for LLP decays reconstruction in the muon system
- ➢ Sensitivity to long lived scalars with masses between 0.4 and 55 GeV
- > Decays in hadronic showers (bbbar, ddbar, K⁺K⁻, K^oK^o, 2π , 2τ , 2γ etc.)
- Interpretations for dark showers and twin Higgs models

Search for inelastic DM with two displaced muons + MET

CMS EXO-20-010

> Inelastic DM – dark photon A' ($m_{A'}$, kinematic mixing **ɛ**), and two closely degenerated by mass DM states (mass splitting Δ , mass of $\chi_1 \mathbf{m}_1$), LLP χ_2 (lifetime ct), dark gauge-fermion coupling $\alpha_{\rm D}$

> The interaction strength $y \equiv \epsilon^2 \alpha_D \left(\frac{m_1}{A'}\right)^2$

18/27

➤ The first LHC search of such a type – mixed LLP + MET signature

- > A pair of displaced muons (soft, collimated)
- Large MET collimated with muons
- ➢ IS energetic jet as a tag

M. Savina, JINR, Russia

The 21th Lomonosov Conference

Search for inelastic DM with two displaced muons + MET

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Summary and outlook on DM searches

- \checkmark Wide variety and an extensive list of analyses on DM and hidden sector at CMS
- ✓ Still no signals of new DM particles/mediator
- Further development of an analysis (scouting triggers , new signatures like semivisible jets, novel prompt/LLP reconstruction algorithms) and related theory/simplified model approaches, new interaction channels, new frameworks

CMS analyses summary on DM search and much more:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

M. Savina, JINR, Russia

The 21th Lomonosov Conference

20/27

Thank you for your attention!

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Backup slides

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Spin of DM mediator: Higgs/gauge (or both) portals to dark matter

Higgs portal: DM interacts with our world only through coupling with the Higgs sector → special importance of Higgs connected studies

Additional higgs bosons needed to accommodate DM \rightarrow an extended Higgs sector. How to extend?

SM style...

- \checkmark SM + one singlet (real/complex) SM + S, the simplest singlet-doublet model (the doublet corresponds to the SM)
- ✓ SM + one doublet (real/complex) 2H(iggs)D(oublet)M(odel), flavor conserving 4 types (type II MSSM), 5 physical states: h, H (CP-even), A (CP-odd), $H^{+/-}$; h–H mixing, "the aligment (decoupling) limit" → $h_{125} = h$
- ✓ SM + doublet + scalar singlet (r/c) 2HDM+S or N(ext/non-minimal)2HDM, flavor conserving 4 types (type II NMSSM), 7 physical states, one is the pseudoscalar → 2HDM+a in the simplified description
- ✓ SM + 2 doublets 3HDM etc.

and non-SM style (SM: isosinglet and isodoublet reps. under SU(2) weak symmetry group). Then how?
✓ isotriplet representations of SU(3) for Higgs fields (Georgi-Machacek model etc.)...

Bright experimental signatures: extra Higgs states, neutral and (doubly)charged, CP-odd and CP-even ones, lighter and heavier than the SM Higgs h_{125}

Also: gauge portal \rightarrow the (axial)vector mediator and double portal \rightarrow both vector + scalar mediators

M. Savina, JINR, Russia

The 21th Lomonosov Conference

SDM models and prompt DM signatures

Generalized or model specific search, combinations of visible and MET signatures

The (axial)vector mediator

The (pseudo)scalar mediator

V(ector)/A(xial)V(ect or)	dijet (dilepton), diboson hW/Z pair, $t\overline{t}$ resonance	S(calar)/P
V(m ector)F(m lavour)C(m c)hanging)	$t+E_T^{miss}$, same-sign tt	S(calar)C(
V(ector)B(aryon-	$h(b\overline{b}/\gamma\gamma/\tau\tau) + E_T^{miss}$	SCCt
number)C(harged)		2HDM+
2HDM+ Z'_V (vector 2HDM based)	$h(b\overline{b}/\gamma\gamma/\tau\tau) + E_T^{miss}$, diboson $W/Z/h$ pairs, $t\overline{t}$ resonance	2HDM base
Dark higgs Z'_V +s	$s(b\overline{b}) + E_T^{miss}$	

S(calar)/PS(cudoscalar)	$\begin{array}{l} jet/V/h + E_T^{miss}, t\overline{t}(b\overline{b}) \text{ resonance}, \\ t\overline{t}(b\overline{b}) + E_T^{miss}, h \rightarrow inv, X \rightarrow hh \end{array}$
$S(calar)C(olor)C(harged)_b$	$b(b\overline{b}) + E_T^{miss}$
SCCt	$t(t\overline{t}) + E_T^{miss}$
2HDM+a (pseudoscalar 2HDM based)	$\begin{array}{l} h + E_T^{miss}, Z(ll)/V(qq')/Z(q\overline{q}) + E_T^{miss}, \\ h \rightarrow inv, X \rightarrow hh, \text{ diboson } Zh(+b\overline{b}), \\ t\overline{t}(b\overline{b}) \text{ resonance}, t\overline{t}(b\overline{b}) + E_T^{miss}, t\overline{t}t\overline{t} \end{array}$

A key: separation/reinterpretation and a wide complementary search with all available signatures

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Inelastic dark matter at the LHC/LLP

M. Savina, JINR, Russia

The 21th Lomonosov Conference

 ✓ One of the most striking DM-targeted signatures (Dark QCD → dark showers)

✓ Tracks start near the edge of the tracker, in the ECAL and HCAL and even in the inner muon stations

Emerging jets/dark showers Dark QCD $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu a} + \overline{q}_{d} i \not{D} q_{d} - \overline{q}_{d} M_{q} q_{d}$ $F^{a}: \text{ dark gluons (}N_{d} \text{ colours)}$ $q_{d}: \text{ dark quarks (}N_{f} \text{ flavours)}$

M. Savina, JINR, Russia

The 21th Lomonosov Conference

29.08.2023

Higgs decay to dark photons: displaced muon jets

