Axion-like particle and dark sector searches at BESIII

Peicheng Jiang (On behalf of the BESIII Collaboration)

Peking University

August 29, 2023 21st Lomonosov Conference on Elementary Particle Physics

Outline

Introduction

BESIII experiment

Axion-like particle search at BESIII

- \blacksquare Search for an axion-like particle in radiative J/ψ decays
 - With $\psi(2S)$ data PLB 838 137698 (2023)
 - With J/ψ data Preliminary result

Dark sector searches at BESIII

- Search for invisible decays of a dark photon
- \blacksquare Search for a massless dark photon in $\Lambda_c^+ \to p \gamma'$ decay
- \blacksquare Search for invisible decays of the Λ baryon

PLB 839, 137785 (2023) PRD 106, 072008 (2022) PRD 105, L071101(2022)

Summary

Introdduction

- Existence of dark matter
 - Galaxy rotation curves
 - Gravitational lensing
 - Cosmic microwave background
- Dark matter may interact with Standard Model through "portal" interactions
 - Vector portal (dark photon)
 - Pseudo-scalar portal (axion-like particle)
 - Scalar portal (dark Higgs)
 - Neutrino portal (heavy neutrinos)

T. Ferber

- Not just solving the dark matter puzzle. Could also explain:
 - Astrophysics anomalies: positron excess...
 - The $(g-2)_{\mu}$ anomaly
 - Strong CP problem, hierarchy problem...

BESIII experiment

- BESIII experiment is a symmetric electron positron collider running at tau-charm region
- BESIII has collected the largest data samples of 10 billion J/ψ , 2.7 billion ψ (3686) on threshold in the world, and 20 fb⁻¹ ψ (3770) data samples are comming soon

Axion-like particles (ALPs)

- Pseudo-Goldstone bosons arising from some spontaneously broken global symmetry, addressing the strong CP or hierarchy problems
- Predicted by many BSM theories and proposed as cold dark matter candidates
- The ALP-photon coupling $g_{a\gamma\gamma}$ is mostly discussed \rightarrow ALP decays to two photons
- Independent mass and coupling bounded by experiments $\rightarrow m_a \sim O(\text{GeV})$ mainly from electron-positron colliders

Phys. Lett. B 753, 482 (2016)

Non-resonant ALP production

Resonant ALP production

- **Data samples:** 2.7B ψ (3686) events
- Search for $J/\psi \to \gamma a, a \to \gamma \gamma$ with $\psi(3686) \to \pi^+\pi^- J/\psi$ decays
 - ALP has a negligible width and lifetime in the search region $0.165 \le m_a \le 2.84 \text{ GeV}/c^2$, decay width $\Gamma_a = g_{a\gamma\gamma}^2 m_a^3/64\pi$
 - ψ (3686) decay \rightarrow preclude the pollution from non-resonant production avoid large QED background $e^+e^- \rightarrow \gamma\gamma(\gamma)$
 - Three $\gamma\gamma$ combinations per event, perform unbinned maximum-likelihood fits on $M_{\gamma\gamma}$
 - Exclude mass intervals around π^0 , η , η' peaks when extracting the signal

Search for an axion-like particle in radiative J/ψ decays

- Perform unbinned maximum likelihood fits to the $M_{\gamma\gamma}$ distribution
- Totally, 674 mass hypotheses are probed
- Step size is less than half the signal resolution (σ), $\sigma = 6 \sim 11 \text{ MeV}/c^2$
- **\blacksquare** Fit intervals (35 \sim 90 σ) are mass-dependent
- The maximum local significance is 2.6σ among all mass points

 $\mathcal{S} = \text{sign}\left(\textit{N}_{ ext{sig}}
ight) \cdot \sqrt{2 \ln\left(\mathcal{L}_{ ext{max}}/\mathcal{L}_{0}
ight)}$

- No significant ALP signal observed
- Upper limit results
 - 95% CL upper limits on $B(J/\psi \rightarrow \gamma a)$ are computed using a one-sided frequentist profile-likelihood method Eur. Phys. J. C 71, 1554 (2011)
 - \blacksquare The observed limits range from 8.3×10^{-8} to 1.8×10^{-6} in the search region
 - The exclusion limits on the ALP-photon coupling are the most stringent to date three times better than Belle II result at $m_a \sim 0.25 \text{ GeV}/c^2$

Search for an axion-like particle in radiative J/ψ decays

Data samples: 10B J/ψ events

- Search for $J/\psi \rightarrow \gamma a, a \rightarrow \gamma \gamma$ with J/ψ data on threshold
 - Estimate the contribution from non-resonant production, $\sigma_{res} = \frac{N_{J/\psi}}{\mathcal{L}_{J/\psi}} \cdot \mathcal{B}(J/\psi \rightarrow \gamma a)$ $\sigma_{non-res}/\sigma_{res} = 0.044$, which is taken as systematic uncertainty
 - Select at three photon candidates in the EMC barrel region
 - Obtain di-photon invariant mass spectrum of all three combinations after vetoing $J/\psi \rightarrow \gamma P \ (P = \pi^0, \eta, \eta', \eta_c)$ backgrounds
 - The 95% CL upper limits of $B(J/\psi \rightarrow \gamma a)$ reach a level of 10^{-7} for full search region

Visible dark photon searches

- $J/\psi
 ightarrow U\eta/\eta'$ decay $_{
 m PRD}$ 99, 012006 (2019) $_{
 m PRD}$ 99, 012013 (2019)
- ISR process PLB 774, 252 (2017)

Searches for fully invisible decays

- Invisible decays of ω/ϕ mesons PRD 98, 032001 (2018)
- Invisible decays of η/η' mesons PRD 87, 012009 (2013)

Other searches with invisible signatures

- Search for the decay $J/\psi \rightarrow \gamma + \text{invisible}$
- Search for FCNC process with invisibles in $D^0 \to \pi^0 \nu \bar{\nu}$

PRD 101, 112005 (2020) PRD 105, L071102 (2022)

Massive dark photon

- A spin-one boson associated with a new Abelian gauge symmetry U(1)_D spontaneously broken, massive kind
- Proposed as a force carrier connected to dark matter
- \blacksquare The dark photon couples weakly to a SM photon through kinetic mixing with a mixing parameter $\epsilon \sim 10^{-3}$
- The dark photon (γ') would predominately decay into a pair of DM particles $\gamma' \rightarrow \chi \bar{\chi}$ if $m_{\chi} < m_{\gamma'}/2$
- Search for the dark photon in the radiative annihilation process $e^+e^- \rightarrow \gamma\gamma'$, followed by an invisible decay of the γ'

- Data samples: 14.9 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.13 \sim 4.60$ GeV
- Search for single photon signals in $1.3 < {
 m E}(\gamma) < 1.8$ GeV corresponding to $1.5 < m_{\gamma'} < 2.9$ GeV
 - Low $E(\gamma)$ region \rightarrow low trigger efficiency & high background level
 - High $E(\gamma)$ region \rightarrow saturation of the EMC electronics
 - A simultaneous likelihood fit on the photon energy spectra is performed to all data sets
 - No obvious signal observed, the 90% CL upper limits of coupling ϵ are $(1.6 5.7) \times 10^{-3}$
 - BESIII will produce more competitive results with 20 fb⁻¹ data taken at 3.77 GeV in the future

Massless dark photon

- A spin-one boson associated with a new Abelian gauge symmetry U(1)_D unbroken, massless kind
- FCNC process is highly suppressed by the GIM mechanism in the charm sector
 less than 10⁻⁹ in SM, Phys. Rev. D 98, 030001 (2018)

• A massless dark photon could induce FCNC process through higher dimensional operators, allowing $\mathcal{B}(\Lambda_c^+ \to p\gamma')$ up to 1.6×10^{-5} Phys. Rev. D 102, 115029 (2020)

The missing energy due to the dark photon is the feature of the signal processes

Search for a massless dark photon in $\Lambda_c^+ \to p\gamma'$ decay

- Data samples: 4.5 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.6 \sim 4.7$ GeV
- Double Tag Method
 - Tag side: reconstruct Λ
 ⁻_c with ten hadronic decay modes. Tag yields: 105244 ± 384
 - \blacksquare Signal side: $\Lambda_c^+ \to p \gamma'$

$$\mathbf{I} \mathcal{B}(\Lambda_{c}^{+} \to p\gamma') = \frac{N_{\rm obs} - N_{\rm bkg}}{\sum_{ij} N_{ij}^{\rm ST} \cdot \left(\epsilon_{ij}^{\rm DT} / \epsilon_{ij}^{\rm ST}\right)}$$

10 hadronic decay modes

- Search for an invisible signature on the square of the recoil mass spectrum $M^2_{rec(\bar{\Lambda}_c^-p)}$
 - Signal region is defined as $(0.0, 0.1) \,\mathrm{GeV}^2/c^4$ in the $M^2_{\mathrm{rec}(\bar{\Lambda}_c^- p)}$
 - No significant signal observed, $\mathcal{B}(\Lambda_c^+ \to p\gamma') < 8.0 \times 10^{-5}$ at 90% CL
 - A more stringent constraint is expected with larger Λ_c^+ samples at BESIII

Search for invisible decays of the Λ baryon

- Dark matter may be represented by baryon matter with invisibles, and many theories suggest a potential correlation between baryon symmetry and dark sector
 Phys. Rev. D 105, 115005 (2022)
- Discrepancy of neutron lifetime in beam method and the storage methods $\rightarrow \mathcal{B}(n \rightarrow p + X) \approx 99\%$ Phys. Rev. D 99, 035031 (2019)
- **Data samples:** 10B J/ψ events
- Double Tag Method: reconstruct $\bar{\Lambda}$ with $\bar{\Lambda} \to \bar{p}\pi^+$ decay $\mathcal{B}(\Lambda \to \text{invisible}) = \frac{N_{\text{sig}}}{N_{\text{tor}} \cdot (\mathcal{E}_{\text{sig}} / \mathcal{E}_{\text{tor}})}$

- Search for signal on total energy in EMC E_{EMC} (not charged tracks)
 - Dominating background: $\Lambda \rightarrow n\pi^0$, $E_{\rm EMC} = E_{\rm EMC}^{\pi^0} + E_{\rm EMC}^n + E_{\rm EMC}^{noise}$
 - $E_{\rm EMC}^{\pi^0}$: based on the MC simulations
 - $E_{\rm EMC}^n + E_{\rm EMC}^{\rm noise}$: based on control sample $J/\psi \to \Lambda \left(n\pi^0\right) \bar{\Lambda} \left(\bar{p}\pi^+\right)$
 - No obvious signal observed, $\mathcal{B}(\Lambda \rightarrow \text{invisible }) < 7.4 \times 10^{-5}$ at 90% CL
 - Consistent with the prediction of 4.4×10^{-7} from the mirror model arXiv:2006.10746

- Dark sectors have become an intriguing idea for understanding dark matter, and also for looking into new physics beyond SM
- BESIII plays an active role in dark sector and axion-like particle search, with many first searches or best limits
 - Search for ALPs with $\psi(2S)$ and J/ψ data (best limits)
 - Search for dark photon invisible decays (competitive results)
 - Search for a massless dark photon in Λ_c^+ decays (first FCNC search of charmed baryon)
 - Search for Λ invisible decays (first search for invisible baryon decays)
- With more data available, more exciting results are coming soon

STAY TUNED