Extra dimensions of space and time in the region of deeply inelastic processes

Boris Levchenko, SINP MSU

- Estimate of the speed of virtual photons from the Heisenberg's inequalities
- HERA data, superluminal photons and difficalties caused by the condition: $\boldsymbol{\beta}^{\boldsymbol{*} \rightarrow \mathbf{1}}$ at $\mathbf{Q}^{\mathbf{2} \rightarrow \mathbf{0}}$ (real photons limit)
- What is the geometry of phase space?
- 2T-physics: one extra timelike and one extra spacelike dimensions
- Interpretation and a solution of the normalization problem
- Summary

Motivation

«The effective quark radius limits», ZEUS collab., HERA
Phys. Lett. B757 (2016) 468, arXiv:1604.01280

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2}} & =\frac{d \sigma^{\mathrm{SM}}}{d Q^{2}}\left(1-\frac{R_{e}^{2}}{6} Q^{2}\right)^{2}\left(1-\frac{R_{q}^{2}}{6} Q^{2}\right)^{2} \\
& -\left(0.47 \cdot 10^{-16} \mathrm{~cm}\right)^{2}<R_{q}^{2}<\left(0.43 \cdot 10^{-16} \mathrm{~cm}\right)^{2} \\
\bar{r}_{q} & =\sqrt{\left|\left\langle R_{q}^{2}\right\rangle\right|}<0.43 \cdot 10^{-3} \mathrm{fm}
\end{aligned}
$$

How to evaluate the radius using HUR? $\sqrt{(\Delta R)^{2} Q^{2}} \geq \hbar$?
Is knowledge of only ($x_{B j}, Q^{2}$) enough? It is not!

Heisenberg's inequalities,

 reduction of degrees of freedom and new parameters$$
\Delta p_{x} \cdot \Delta x \geq \hbar / 2 \quad \text { This is a secondary representation! }
$$

The primary view is as follows (H.Weyl):

Heisenberg's inequalities: II

In the same 1927 article, Heisenberg gives an uncertainty relation for another pair of canonically conjugate energy-time variables:

$$
(\Delta E)^{2}(\Delta t)^{2} \geq \delta_{H}^{2} \cdot \hbar^{2} \quad E_{1} t_{1} \sim h
$$

In relativistic domain $U_{x} \Delta p_{x} \Delta t \geq \delta_{L P} \cdot \boldsymbol{\hbar}$
Similarly, adding the squares of the components with the vector $\overrightarrow{U^{(2)}}=\left(\left(U_{x}\right)^{2},\left(U_{y}\right)^{2},\left(U_{z}\right)^{2}\right)$, we obtain

$$
\left\|\overrightarrow{U^{(2)}}\right\| \cdot\left\|(\Delta \vec{P})^{(2)}\right\| \cdot(\Delta t)^{2} \sim 3 \delta_{L P}^{2} \hbar^{2} / \cos \Psi_{H}
$$

By taking the ratio,

$$
\left\|U^{(2)}\right\| \geq \boldsymbol{A}_{\boldsymbol{t}} \frac{(\Delta E)^{2}}{\left\|(\Delta \vec{P})^{2}\right\|}
$$

The speed estimate we are looked for!

Finally:

For the norm of group velocity

$$
U_{l b}^{*} \sim \sqrt{\sqrt{3}\left\|U^{(2)}\right\|}=\sqrt{\sqrt{3} A_{t} \frac{(\Delta E)^{2}}{\left\|(\Delta \vec{P})^{(2)}\right\|}}
$$

From the Cauchy-Buniakowsky-Schwarz inequality

For the norm of group velocity

From the Cauchy-Buniakowsky-Schwarz inequality
$\left|(\Delta \vec{P})^{(2)}\right|$ and $(\Delta E)^{2}$ are obtained via indirect measurements.

Method of indirect measurements

Indirect measurement is a measurement in which the value of the unknown quantity sought is calculated from measurements of other quantities related to the measurand by some known relation.

For instance,

$$
z=F(x, y), \quad(\Delta z)^{2}=(\partial F / \partial x)^{2}(\Delta x)^{2}+(\partial F / \partial y)^{2}(\Delta y)^{2}
$$

In our study, we need to calculate $(\Delta E)^{2}$ and $\left|(\Delta \vec{P})^{(2)}\right|$

For DIS

$$
\begin{array}{ll}
(\Delta E)^{2}=\left(\frac{\partial E}{\partial x_{B j}}\right)^{2}\left(\Delta x_{B j}\right)^{2}+\left(\frac{\partial E}{\partial y}\right)^{2}(\Delta y)^{2} & \text { Chained } \\
(\Delta P)^{2}=\left(\frac{\partial P}{\partial E}\right)^{2}(\Delta E)^{2}+\left(\frac{\partial P}{\partial Q^{2}}\right)^{2}\left(\Delta Q^{2}\right)^{2}, & \text { relations }
\end{array}
$$

e $\pm p$ DIS kinematics

$$
\begin{gathered}
Q^{2}=-\left(k-k^{\prime}\right)^{2} \\
x_{B j}=\frac{Q^{2}}{2 P \cdot q} \\
y=\frac{P \cdot q}{P \cdot k}
\end{gathered}
$$

HERA (1992-2007):
Energies

$$
\begin{aligned}
& \mathrm{e} \pm: 27.5 \mathrm{GeV} \\
& \mathrm{p}: 820,920,575 \text { and } 460 \mathrm{GeV}
\end{aligned}
$$

Data for Q^{2} and X вi from Tables

«Combination of Measurements of Inclusive Deep Inelastic e $\pm \mathrm{p}$ Scattering Cross Sections and QCD Analysis of HERA Data»

Eur. Phys. J. C 75 (2015) 580

Compromise combining data from the ZEUS and H1 experiments

HERA data

Each point $\left(x, Q^{2}\right)$ is an average values in a bin on the ($\mathrm{x}, \mathrm{Q}^{2}$)-plane.

I present here results only for a small portion of data at $\mathrm{Ep}=820 \mathrm{GeV}$, NC, Table 11!

Q^{2} and $\mathrm{x} _$bj from Tables with the HERA data

$\mathrm{Ep}=820 \mathrm{GeV}, \mathrm{NC}$, table 11

Conclusion I

- Virtual photons are superluminal!

Another view

\mathbf{y} windows
$0.354-0.47$ (red)
$0.47-0.511$ (blue)
$0.511-0.598$ (black)
$0.598-\mathbf{0 . 6 7 6}$ (magenta)
$0.676-0.951$ (green)

Different colors indicate data with the inelasticity, $\mathbf{y}=\mathbf{Q 2} / \mathbf{x B j} \mathbf{s}$, in the following intervals :
$0.354-0.47$ (red); 0.47-0.511 (blue); 0.511-0.598 (black); 0.598-0.676 (magenta); 0.676-0.951 (green)
29.08.23, XXILC'23

Extra dimensions .., BB Levchenko, SINP MSU

A challenge!

$$
A_{t}=\frac{\delta_{L P}^{2}}{\delta_{H}^{2}} \frac{3}{\cos \Psi_{H}} \rightarrow A_{t}=\frac{3}{\cos \Psi_{H}} \quad \text { If } \quad \frac{\delta_{L P}^{2}}{\delta_{H}^{2}}=1
$$

The normalization condition: $\sqrt{3} A_{t}=1$
But $\quad 3 \sqrt{3} \neq \cos \Psi_{H} \quad$ in Euclidean 3D part of the Minkowski space with the signature $(+,-,-,-)=(1,3)$!

A possible solution to this problem is to "increase" the pseudo-Euclideanity of space, say, a space with signature $(2,2)$:

$$
\cos \Psi_{H} \rightarrow \cosh \left(\Psi_{H}\right)
$$

But this destroys the relativistic kinematics !
Lets look for another solution!!

Ancient wisdom

Give me a firm spot on which to stand, and I will Archimedes

Additional Dimensions of Space and Time

Superstrings: 10D \rightarrow M-theory, (2,10); F-theory, (2,10); S-theory , $(2,11) ;(1,2)$ strings; 12D super Y-M
A lot of evidence has accumulated by now to convince oneself that the different versions of $D=10$ superstrings and their compactifications are related to each other nonperturbatively by duality transformations. There is evidence that the non-perturbative theory is hiding higher dimensions

The main difficalties of the T-like variable:

- negative probabilities ("ghosts");
- violation of causality (paradoxes)

"Treatment" by means of local gauge symmetry !

Additional timelike dimensions

Sakharov, Aref'eva-Volovich - The possibility of the cosmological emergence of additional time dimensions (no ghost modes in KK if T' in compact manifold, no Killing vector field), a solution $\Lambda=0$ in $4 D$.
Berndt Müller (hep-th/1001.2485) — HEP processes: a thermally excited T*, a small compactification radius, such a scenario is consistent with Kaluza-Klein type theories.

All above are at the Planck scale !

But our experimental data are collected at «low» energies
and
we need a theory with <large» extra timelike dimention(s)!

Symplectic properties are possessed by:

- Linear optics
- Classical mechanics
- Hydrodynamics
- Maxwell equations
- Lorentz transformations
- STR, GTR
- Quantum mechanics
- Field theory

Not well accounted by QFT!

Manifolds, phase space, symplecticity

Lagrange space: $\quad M \oplus T_{x} M$

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{j}}-\frac{\partial L}{\partial q_{j}}=0
$$

General covariance principle

Geometry of the phase space is symplectic geometry.

Symplectic group $\operatorname{Sp}(2 n)$--a group of linear transformations that preserve the canonical form of the Hamilton equations, Poisson brackets and preserve the skew-symmetric 2-form.

$$
\begin{gathered}
\omega(a, b)=a \wedge b \\
\omega(M a, M b)=\omega(a, b)
\end{gathered}, a=(q, p), b=\left(q^{\prime}, p^{\prime}\right)
$$

Phase space (Hamilton)

$$
\begin{aligned}
& \dot{q}^{j}=\frac{\partial H}{\partial p_{j}} ; \dot{p}_{j}=-\frac{\partial \boldsymbol{H}}{\partial \dot{q^{j}}} \quad \begin{array}{l}
\text { Hamilton's }
\end{array} \\
& Q^{i}=Q^{i}(\boldsymbol{q}, \boldsymbol{p}, t) ; P_{i}=P_{i}(\boldsymbol{q}, \boldsymbol{p}, t) ; i=1,2, \cdots, n \\
& \boldsymbol{M}=\left[\begin{array}{ll}
\frac{\partial \boldsymbol{Q}}{\partial \boldsymbol{q}} & \frac{\partial \boldsymbol{Q}}{\partial \boldsymbol{p}} \\
\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{q}} & \frac{\partial \boldsymbol{P}}{\partial \boldsymbol{p}}
\end{array}\right] \quad \text { Jacobian matrix } \\
& \operatorname{det} M=1 \\
& J^{2}=-I, J^{\top}=-J
\end{aligned}
$$

In the quantum case, $\mathbf{S p}(\mathbf{2 n})$ preserves the commutation relations,

$$
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=i \hbar J_{\alpha \beta}
$$

$\operatorname{Sp}(2 n, \mathbb{R})$ is a «big» group !!

$$
\begin{array}{cc}
\boldsymbol{S p}(2 \mathbf{n}, \mathbb{R}) \subset \mathbf{G L}(\boldsymbol{n}, \mathbb{R}) \subset \mathbf{O}(\boldsymbol{n}) \subset \mathbf{S O}(\boldsymbol{n}) \\
n(2 \mathrm{n}+1) & n^{2} \\
\frac{1}{2} n(n-1) \\
\mathbf{S U}(\boldsymbol{n}) \subset \boldsymbol{U}(\boldsymbol{n}) \subset \mathbf{S p}(\mathbf{2 n}, \mathbb{R}) \\
n^{2}-1 & n^{2} \\
n(2 \mathrm{n}+1)
\end{array}
$$

$U(n)$ and $S U(n)$ are the basics of the Standard Model: $U(1) \otimes S U(2) \otimes S U(3)$

«Two-Time Physics»: Itzhak Bars (USC)

1995-present
University of Southern California, L-.A.

Hints:

Superstrings: 10D \rightarrow M-theory, $(2,10)$; F-theory, (2,10); S-theory , $(2,11)$; $(1,2)$ strings; 12D super Y-M
Ghosts and violation of causality

Extra Dimensions in Space and Time

$1 \mathrm{~T} \Leftrightarrow$ special gauge symmetries
The "magic" formula, "casting out ghosts" and opening the cherished box of a new theory, is

the local gauge symmetry $\operatorname{Sp}(2, R)$ in $\operatorname{Ph}-S p$!

$\mathbf{S p}(\mathbf{2}, \mathbf{R})$ makes equivalent (indistinguishable): $X^{M} \rightarrow P_{M}$ and $P_{M} \rightarrow X^{M}$
Global $\operatorname{Sp}(2, R)$

Local gauge symmetry

$$
\begin{aligned}
& p_{i}=\frac{\partial F_{1}}{\partial q_{i}}=Q_{i}, \\
& P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}=-q_{i}
\end{aligned}
$$

$$
\binom{\tilde{X}^{M}(\tau)}{\tilde{P}^{M}(\tau)}=\left(\begin{array}{cc}
a(\tau) & b(\tau) \\
c(\tau) & \frac{1+b(\tau) c(\tau)}{a(\tau)}
\end{array}\right)\binom{X^{M}(\tau)}{P^{M}(\tau)}
$$

2T - physics

Allegorical representation relationship between 2 T physics and 1T physics

2T physics in d+2 dimensions, spawns many "shadows/images", 1T-phenomena (physicist) in (D,1) dimension. $D=d-1=3$

Geometry of space-time 2T-physics: (1+1',D+1').
-The geometry of the phase space is everywhere locally symplectic.

PHYSICAL REVIEW D, VOLUME 62, 046007
Two-time physics in field theory
Itzhak Bars

PHYSICAL REVIEW D 74, 085019 (2006)
Standard model of particles and forces in the framework of two-time physics
Itzhak Bars
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-2535 USA (Received 16 June 2006; published 20 October 2006)
«there and back again»
International Journal of Modern Physics A
Vol. 25, No. 29 (2010) 5235-5252
GAUGE SYMMETRY IN PHASE SPACE CONSEQUENCES FOR PHYSICS AND SPACE-TIME*

ITZHAK BARS

PHYSICAL REVIEW D 82, 045031 (2010)
Six-dimensional methods for four-dimensional conformal field theories
Steven Weinberg*
Theory Group, Department of Physics, University of Texas Austin, Texas, 78712, USA (Received 30 June 2010; published 30 August 2010)
.. both spinor and tensor Green's functions in 4D conformally-invariant field theories can be greatly simplified by six-dimensional methods.

Interpretation and solution of the problem $\sqrt{3} A_{t}=1$

We postulate: Geometry of space-time is ($1+1^{\prime}, 3+1^{\prime}$)
Minkowski, (1,3): $\quad d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}=\left(g_{i k} \beta^{i} \beta^{k}+g_{44}\right) d x_{4} d x_{4}$
The p-Euclidean part of $\boldsymbol{g}_{\alpha \beta}$ is not involved in determining the speed of the particle.
Similarly, in S-T (2,4), (+,+,-,-,-,-) (Bars) $d s^{2}=(c d t)^{2}+(c d \tau)^{2}-g_{i k} d x^{i} d x^{k}-d x \cdot d x$
DIS has a small spatial and temporal extent.
Extra dims
"Capture" of variables dx or dt with the probability $\sim \mathbf{a},\{\mathrm{dx}, \mathrm{d} T\} \sim \mathbf{a}^{\mathbf{2}}$
"Capture" of the old $\left\{\boldsymbol{d} \boldsymbol{t}, \boldsymbol{d} \boldsymbol{x}^{i}\right\} \sim \boldsymbol{\omega}$.
Schematically:

$$
\begin{array}{ll}
\beta_{H}^{2}\left(t, x^{1,} x^{2}, x^{3}\right) \sim \omega & \tilde{\beta_{H}^{2}}\left(t, x^{i}, x^{j}, x\right) \sim 3 \alpha \\
u_{B}^{2}\left(\tau, x^{1,} x^{2} x^{3}\right) \sim \alpha & \tilde{u_{B}^{2}}\left(\tau, x^{i}, x^{j}, x\right) \sim 3 \alpha^{2}
\end{array}
$$

In total: $\omega+\mathbf{4} \alpha+\mathbf{3} \alpha^{2}=\mathbf{1} \quad$ So, $a=0$ at $\omega=1$.

Interpretation and solution of the problem $\sqrt{3} A_{t}=1$

In this way $\beta_{\text {eff }}^{*_{2}}=\sqrt{3}\left(\omega \cdot \beta_{H}^{2} \cdot A_{H}+3 \alpha \cdot \tilde{\beta_{H}^{2}} \cdot A_{H}+\alpha \cdot u_{B}^{2} \cdot A_{B}+3 \alpha^{2} \cdot \tilde{u}_{B}^{2} \cdot A_{B}\right)$
Or at $\mathrm{Q}^{2}=0 \quad 1=\sqrt{3} A_{\text {eff }}, \quad \beta_{H}^{2}=\tilde{\beta_{H}^{2}}=u_{B}^{2}=\tilde{u}_{B}^{2}=1$

$$
A_{H}=\frac{3}{\cos \psi_{H}}, \quad A_{B}=\frac{3}{\cos \psi_{B}}
$$

with

$$
A_{\mathrm{eff}}=\omega \cdot A_{H}+3 \alpha \cdot A_{H}+\alpha \cdot A_{B}+3 \alpha^{2} \cdot A_{B}
$$

We solve equation

$$
1=3 \sqrt{3}\left\{\frac{1-\alpha-3 \alpha^{2}}{\cos \psi_{H}}+\frac{\alpha+3 \alpha^{2}}{\cos \psi_{B}}\right\}
$$

with respect to α. Thus, in order to $\alpha \in(0,1)$
$\alpha>0$, if

And, $\alpha<1$,

Conclusion II

The equation $\sqrt{3} \boldsymbol{A}_{\text {eff }}-\mathbf{1}=\mathbf{0}$ has a solution in the space-time volume with the signature (1+1',3+1').

The problem has no solution if only one extra dimension is added!

Summary I

- We have developed a general mathematical method based on quantum uncertainty relations and the theory of indirect measurements, which makes it possible to estimate the group velocity of virtual photons $\boldsymbol{\gamma}^{*}$ from the data for deep inelastic scattering processes.
- HERA data indicate that the group velocity of virtual photons, β^{*}, can exceed the speed of light in free space $\left(\beta^{*}>1\right)$.

Summary II

- Superluminal speed, $U^{*}>$ c, means that virtual photons γ^{*} have tachyon-like properties:

	Tachyon	Virtual photon
mass	$\left(m^{*}\right)^{2}<0$	$\left(m^{*}\right)^{2}=-Q^{2}<0$
energy	$\epsilon<0,>0$	$q_{0}<0,>0$
speed	$\beta^{*} \geq 1$	$\beta^{*} \geq 1$
	$\epsilon \rightarrow 0, \beta^{*} \rightarrow \infty q_{0} \rightarrow 0, \beta^{*} \rightarrow \infty(?)$	

- The first particle from the tachyon family is identified.

Summary III

- Within the framework of the theory of 2T-physics by I. Bars, a solution to the problem of the normalization condition, $\boldsymbol{\beta}^{\boldsymbol{*}} \rightarrow \mathbf{1}$ at $\mathbf{Q}^{\mathbf{2}} \rightarrow \mathbf{0} \mathrm{GeV}^{2}$, is found.
(2T-physics: QFT in phase-space with the local $\mathrm{Sp}(2, \mathrm{R})$ gauge symmetry and the space-time of signature ($1+1$ ', $3+1^{\prime}$))
- It is shown that the "admixture" of extra time and extra space dimensions in DIS processes makes it possible to explain the normalization condition $\sqrt{3} \boldsymbol{A}_{\text {eff }}=1$ as observed in the «Minkowski» space.

Thank's for Your Attention!

A quotation from Gell-Mann
 (Once you have a consistent theory), Anything which is not forbidden is compulsory !

Backup slides

The Cauch-Buniakowsky-Schwarz inequality is the statement

$$
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+\cdots+b_{n}^{2}\right) \geq\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\cdots+a_{n} b_{n}\right)^{2}
$$

Now let set all $b_{i}=1, \mathrm{n}=3$ and $a_{1}=a^{2}, a_{2}=b^{2}, a_{3}=c^{2}$. Let vectors are with components $\vec{u}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $\overrightarrow{V^{2}}=\left(a^{2}, b^{2}, c^{2}\right)$.

So, $\left(a^{2}+b^{2}+c^{2}\right)^{2} \leq 3\left[\left(a^{2}\right)^{2}+\left(b^{2}\right)^{2}+\left(c^{2}\right)^{2}\right] \rightarrow u^{2} \leq \sqrt{3\left(\overrightarrow{V^{2}}\right)^{2}} \rightarrow|u| \leq \sqrt{\sqrt{3} \mid \overrightarrow{V^{2}}} \mid$

	x1	x2	x3	x	t	τ
p1	$\left(\Delta p_{1}\right)^{2} \cdot\left(\Delta x_{1}\right)^{2} \geq\left(\frac{\hbar}{2}\right)^{2}$	0	0	α	0	0
p2	0	$\left(\Delta p_{2}\right)^{2} \cdot\left(\Delta x_{2}\right)^{2} \geq\left(\frac{\hbar}{2}\right)^{2}$	0	α	0	0
p3	0	0	$\left(\Delta p_{3}\right)^{2} \cdot\left(\Delta x_{3}\right)^{2} \geq\left(\frac{\hbar}{2}\right)^{2}$	α	0	0
p	α	α	α	$\begin{gathered} \alpha^{2} \\ (\Delta p)^{2} \cdot(\Delta x)^{2} \geq\left(\frac{\hbar}{2}\right)^{2} \end{gathered}$	0	0
E_{t}	0	0	0	0	$\left(\Delta E_{t}\right)^{2} \cdot(\Delta t)^{2} \geq\left(\delta_{H} \hbar\right)^{2}$	α
E_{τ}	0	0	0	0	α	$\begin{gathered} \alpha^{2} \\ \left(\Delta E_{\tau}\right)^{2} \cdot(\Delta \tau)^{2} \geq\left(\delta_{H} \hbar\right)^{2} \end{gathered}$

Some references

O. Belaniuk, V. Deshpande, E. Sudarshan, «Meta» relativity, Amer. J. Phys., 30, 718 (1962)
O. Belaniuk, E. Sudarshan, Particles beyond the light barrier, Physics Today, 5, 43 (1969)
Y.P. Terletskii, Paradoxes in the theory of relativity,(1966Ru, 1968 En)

- G. Feinberg. On the Possibility of Faster than Light Particles.— Phys. Rev., 1967,159, 1089;
(gave the name «tachyon»)
- V.S. Barashenkov, Tachyons: particles moving with velocities greater than the speed of light" Sov. Phys. Usp. 18 774-782 (1975)
- V.F.Perepelitsa, Looking for a Theory of Faster-Than-Light Particles, ArXiv:1407.3245v4 (2015)
E. Recami, a lot of papers
+ Search the word «superluminal» in ArXiv
III. Systems with an imaginary proper mass, i.e., $\mathrm{M}^{2}<0$.

Systems of the third kind include the virtual particles of quantum theory of field.

Hence, the virtual particles appearing in the quantum theory of elementary particles can be considered as physically real particles with imaginary proper masses exchanged by ordinary elementary particles. The introduction of such particles does not violate the second law of thermodynamics and, consequently, we cannot violate the macroscopic Principle of Causality with their help. (Y.P. Terletskii, 1966)

Reinterpretation principle-interpretation of negative-energy tachyons propagating backward in time as positive-energy tachyons propagating forward in time. This reinterpretation invalidates causality objections to the possibility of existence of faster-than-light signals and permits construction of a consistent theory of tachyons.(O. Belaniuk, E. Sudarshan)

