

Study of radiative kaon decay $K^+ \rightarrow \pi^0 e^+ v \gamma$ using OKA detector

- OKA detector
- Ke3 and Ke3γ decays selection
- Background suppression
- Results
- Conclusions

Radiative K⁺ $\rightarrow \pi^0 e^+ \nu \gamma$ decay

The matrix element for $K \rightarrow \pi^0 e \nu \gamma$ has general structure

$$T = \frac{G_F}{\sqrt{2}} e V_{us} \varepsilon^{\mu}(q) \left\{ (V_{\mu\nu} - A_{\mu\nu}) \overline{u}(p_{\nu}) \gamma^{\nu} (1 - \gamma_5) v(p_l) + \frac{F_{\nu}}{2p_l q} \overline{u}(p_{\nu}) \gamma^{\nu} (1 - \gamma_5) (m_l - \not p_l - \not q) \gamma_{\mu} v(p_l) \right\} \equiv \epsilon^{\mu} A_{\mu}.$$

$$(1)$$

First term of the matrix element describes Bremsstrahlung of kaon and direct emission(Fig.1a The lepton Bremsstrahlung is presented by second part of Eq(1) and (Fig.1b).

IHEP PS U-70

U-70 ring

IHEP Protvino

OKA collaboration operate at IHEP PS U-70 in Protvino, Moscow region. Detector is located in positive RF-separated beam with up to 20% of K-meson.

A.Polyarush INR RAS

OKA detector

 $1 + g = S_1 + S_2 + S_3 + C_1 + C_2 + S_{0k} + (2GAMS > mp)$

1. Beam spectrometer: 1mm pitch PC, ~1500 channels; Cherenkov counters

2. Decay volume with Veto system:

11m; Veto: 670 Lead-Scintillator sandwiches 20* (5mm Sc+1.5 mmPb), WLS readout

3. PC's and DT's for magnetic spectrometer:

~5000 ch. PC (2 mm pitch) + 1300 DT (1 and 3 cm)

- 4. Pad(Matrix) Hodoscope ~300 ch. WLS+SiPM readout
- 5. Magnet: aperture $200*140 \text{ cm}^2$
- 6. Gamma detectors: GAMS2000, EHS-backward EM cal. ~ 4000 LG.

7. Muon identification: GDA-100 HCAL+ 4 muon trigger counters behind

Decay volume with Veto System

Decay volume with the Veto System

Decay volume inside view

Veto System

K_{e3} decay selection

6

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$ events selection

- 1) One positive charged track detected in tracking system and 4 showers
- $(E_{\gamma} > 0.7 \text{GeV} (0.5 \text{ for } \pi^0))$ detected in electromagnetic calorimeters.
 - 2) One shower must be associated with charged track.
 - 3) Charged track is identified as positron.
 - 4) Vertex of event situated within the decay volume.
 - 5) The effective mass $M_{\gamma\gamma}$ for one $\gamma\gamma$ –pair is 0.115 < $M_{\gamma\gamma}$ <0.165 GeV.

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$ events selection

Background suppression

The main background channels for the decay $K^+ \rightarrow \pi^0 e^+ v \gamma$ are:

1) $\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v}$ with extra photon. The main source of extra photons are an interactions of positrons in the detector material.

2) $\mathbf{K}^+ \rightarrow \pi^+ \pi^0 \pi^0$ where one π^0 photons not detected and π^+ decays to $\mathbf{e}^+ \mathbf{v}$ or misidentified as positron.

3) $\mathbf{K}^+ \rightarrow \pi^+ \pi^0$ with fake photon and π^+ decayed or misidentified as positron. Fake photon clusters can come from π^+ hadron interaction in the detector, accidentals. All these sources are included in our MC calculations.

4) $\mathbf{K}^+ \rightarrow \pi^+ \pi^0 \mathbf{\gamma}$ when π^+ decays or is miss-identified as an positron. 5) $\mathbf{K}^+ \rightarrow \pi^0 \pi^0 \mathbf{e}^+ \mathbf{\nu}$ when one $\mathbf{\gamma}$ is lost.

° DKA

Background suppression

- 1) $E_{miss} > 0.5 GeV, E_{veto} < 50 M \Im B, -2200 < Z_{vx} < -950, E_{\gamma} > 0.7(0.5) GeV;$
- 2) $|\Delta y| = |y_{\gamma} y_{e+}| > 3$ cm, Δy vertical distance in GAMS plane;
- 3) |x,y| of reconstructed "v" < 100cm in GAMS-2000 plane;
- 4) 4 mrad $< \theta_{e\gamma} < 80$ mrad,
- 5) $M_K > 0.45 GeV;$
- 6) $|M^2_{\text{miss}}(\pi^0 e^+ \gamma)| < 0.006 \text{ GeV}^2,$
- where $M^2_{\ miss}\,(\pi^0 e^+ \gamma \) = (P_K P_{\pi^o} P_e P_{\gamma})^2 \ ,$
- M_{K} K meson mass recovered, mass of the ($\pi^{0}e^{+}\nu\gamma$)- system, assuming $m_{\nu}=0$.

After applying cuts 1 to 6, we received 112000 candidates.

MC calculations gave us a total background 18500 decay, which is 16.5%. We extracted investigated decay with a relatively small background.

K_{3π} background suppression

Results

K_{e3} background suppression

Results

For $E^*\gamma > 10 \text{MeV } \theta^*e\gamma > 10^\circ$ for the relative branching ratio we got

 $R_1 = \Gamma(K^+ \to \pi^0 e^+ \nu \gamma) / \Gamma(K^+ \to \pi^0 e^+ \nu) = (1.805 \pm 0.017 \pm 0.020) \cdot 10^{-2}$

Theoretical prediction for R from CHPT is $R_1 = 1.804 \pm 0.021 \cdot 10^{-2}$ [Eur. Phys. J. C 50 (2007) 557.]

For $E_{\gamma}^* > 30 MeV \theta_{ev}^* > 20^\circ$ for the relative branching ratio we got

 $\mathbf{R}_2 = \Gamma(\mathbf{K}^+ \to \pi^0 \mathbf{e}^+ \mathbf{v} \mathbf{\gamma}) / \Gamma(\mathbf{K}^+ \to \pi^0 \mathbf{e}^+ \mathbf{v}) = (0.621 \pm 0.010 \pm 0.015) \cdot 10^{-2}$

Theoretical prediction for R from CHPT is $R_2 = 0.640 \pm 0.008 \cdot 10^{-2}$

Results

For $E_{\gamma}^* > 10$ MeV and $0.6 < \cos^*\theta < 0.9$ we have 24840 selected events with 1870 background events. Comparing this after efficiency correction with our 10041000 K_{e3} events, for the relative branching ratio we got

 $R_3 = \Gamma(K^+ \rightarrow \pi^0 e^+ \nu \gamma) / \Gamma(K^+ \rightarrow \pi^0 e^+ \nu) = (0.542 \pm 0.010 \pm 0.012) \cdot 10^{-2}$

Theoretical prediction for R_3 from CHPT is $R_3 = (0.559 \pm 0.008) \cdot 10^{-2}$

N _{ev}	$R_{exp} \cdot 10^{-2}$	Reference	
24840	$0.54 \pm 0.01 \pm 0.01$	This work	
7248	$0.53 \pm 0.01 \pm 0.01$	OKA	
1456	$0.48 \pm 0.02 \pm 0.03$	ISTRA+	
82	0.46 ± 0.08	XEBC	
192	0.56 ± 0.04	ISTRA	
13	0.76 ± 0.28	HLBC	

Table 1.

Systematic

Systematic errors are estimated by variation of cuts 1-6

R_i^{cut}	1	2	3	4	5	6
R ₁	0.003	0.004	0.006	0.008	0.012	0.011
R ₂	0.004	0.002	0.004	0.005	0.010	0.004
R ₃	0.001	0.001	0.005	0.001	0.010	0.004

Table 2

Summary

- 1) OKA collaboration, operating at IHEP Protvino U-70 PS in RF-separated beam, has accumulated large statistics of K⁺ decays.
- 2) $\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v} \mathbf{\gamma}$ decay signal is extracted with a low background.
- 3) For $E^*\gamma > 10 \text{MeV } \theta^*e\gamma > 10^\circ$ for the relative branching ratio we got $\mathbf{R}_1 = \Gamma(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v} \mathbf{\gamma}) / \Gamma(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v}) = (1.804 \pm 0.017 \pm 0.020) \cdot 10^{-2}$

4) For $E^*\gamma > 30 \text{MeV} \ \theta^*e\gamma > 20^\circ$ for the relative branching ratio we got $\mathbf{R}_2 = \Gamma(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v} \mathbf{\gamma}) / \Gamma(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v}) = (0.621 \pm 0.010 \pm 0.013) \cdot 10^{-2}$

5) for the region $E^*\gamma > 10$ MeV and $0.6 < \cos^*\theta_{e\gamma} < 0.9$ at statistic 24840 events. $\mathbf{R}_3 = \Gamma(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v} \mathbf{\gamma}) / \Gamma(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v}) = (0.542 \pm 0.010 \pm 0.012) \cdot 10^{-2}$

Next step – to measure SD terms.