

Elena M. Savchenko

Introduction

Model descriptio

Relativistic quark mode

Matrix element

Results

Analysis

Experiment

Conclusion

Publications

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenko

Department of Quantum Theory and High Energy Physics, M.V.Lomonosov Moscow State University; Federal Research Center "Computer Science and Control", Russian Academy of Sciences

in collaboration with V.O. Galkin

21st Lomonosov Conference on Elementary Particle Physics, August 24-30, 2023

Introduction

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenko

Introduction

Model description

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

◊ "Ordinary" hadrons:

- baryons qqq,
- mesons $q\overline{q}$.
- Exotic hadrons:
 - tetraquarks $qq\overline{qq}$,
 - pentaquarks $qqqq\overline{q}$, etc.

 \diamond Searches for the $X_{cc\overline{cc}}$, $X_{bb\overline{b}\overline{b}}$ are conducted on the Large Hadron Collider (LHC) by the LHCb, ATLAS and CMS Collaborations.

Elena M. Savchenko

Introduction

Model description

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

Model description I

 $\diamond~m_{c}=1.55$ GeV, $m_{b}=4.88$ GeV.

◊ Quark content:

• symmetric – $cc\overline{cc}$, $cb\overline{cb}$, $bb\overline{bb}$,

• asymmetric – $ccc\overline{b}$, $bcc\overline{c}$, $cc\overline{b}\overline{b}$, $bb\overline{c}\overline{c}$, $bb\overline{b}\overline{c}$, $cb\overline{b}\overline{b}$.

Model description II

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenk

Introduction

Model descriptior

Relativistic quark model

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

 $\label{eq:constraint} \begin{array}{l} \diamond \mbox{ Diquark-antidiquark bound state:} \\ \{(Q_1Q_2) - (\overline{Q}_3\overline{Q}_4)\}. \end{array}$

- ◊ Ground state diquarks:
 - scalar (S) J = 0,
 - axialvector (A) J = 1.
- ◊ Diquark content:
 - only axialvector $cc\overline{cc}$, $cc\overline{bb}$, $bb\overline{cc}$, $bb\overline{bb}$,
 - both axialvector and scalar $cc\overline{b}$, $bc\overline{cc}$, $cb\overline{cb}$, $bb\overline{b}\overline{c}$, $cb\overline{b}\overline{b}$.

Relativistic quark model I

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenko

Introduction

Model description

Relativistic quark mode

Matrix elements Results Analysis Experime

Conclusion

Publications

 Relativistic Schrödinger-type quasipotential equation:

$$\left(rac{b^2(M)}{2\mu_R(M)} - rac{\mathbf{p}^2}{2\mu_R(M)}
ight)\Psi_{T,d}(\mathbf{p}) = \int rac{d^3q}{(2\pi)^3} \ V(\mathbf{p},\mathbf{q};M)\Psi_{T,d}(\mathbf{q})$$

$$\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

Relativistic quark model II

description of full heavy tetraquark spectroscopy Elena M. Savchen

Introduction

Model description

Relativistic quark model

Matrix elements Results Analysis Experime

Conclusion

Publications

 Diquark-antidiquark interaction quasipotential:

$$\begin{split} V(\mathbf{p}, \mathbf{q}; M) &= \frac{\langle d(\mathcal{P}) | J_{\mu} | d(\mathcal{Q}) \rangle \langle d_{\alpha} \rangle \langle d_{\alpha} \rangle D^{\mu\nu}(\mathbf{k}) \frac{\langle d'(\mathcal{P}') | J_{\nu} | d'(\mathcal{Q}') \rangle}{2\sqrt{E_{d'}}\sqrt{E_{d'}}} \\ &+ \Psi_{d}^{*}(\mathcal{P}) \Psi_{d'}^{*}(\mathcal{P}') [J_{d;\mu} J_{d'}^{\mu} V_{\mathsf{conf.}}^{V}(\mathbf{k}) + V_{\mathsf{conf.}}^{S}(\mathbf{k})] \Psi_{d}(\mathcal{Q}) \Psi_{d'}(\mathcal{Q}') \end{split}$$

・ 4 聞 ト 4 重 ト 4 聞 ト 4 聞 ト 4 個 ト 4

Relativistic quark model III

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenko

Introduction

Model description

Relativistic quark mode

Matrix elements Results Analysis Experime Conclusic

Publications

Diquark-antidiquark interaction quasipotential in configuration space:

$$V(r) = \left[V_{\mathsf{Coul.}}(r) + V_{\mathsf{conf.}}(r) + \frac{1}{E_1 E_2} \left\{ \mathbf{p} \left[V_{\mathsf{Coul.}}(r) + V_{\mathsf{conf.}}^V(r) \right] \mathbf{p} - \frac{1}{4} \Delta V_{\mathsf{conf.}}^V(r) + V_{\mathsf{Coul.}}^\prime(r) \frac{\mathbf{L}^2}{2r} \right\} \right]_a$$

$$+ \left[\left\{ \frac{1}{2} \left[\frac{1}{E_1(E_1 + M_1)} + \frac{1}{E_2(E_2 + M_2)} \right] \frac{V'_{\text{Coul.}}(r)}{r} - \frac{1}{2} \left[\frac{1}{M_1(E_1 + M_1)} + \frac{1}{M_2(E_2 + M_2)} \right] \frac{V'_{\text{conf.}}(r)}{r} \right] \right]$$

$$+ \frac{\mu_d}{4} \left[\frac{1}{M_1^2} + \frac{1}{M_2^2} \right] \frac{V'_{\text{conf.}}(r)}{r} + \frac{1}{E_1 E_2} \left[V'_{\text{Coul.}}(r) + \frac{\mu_d}{4} \left(\frac{E_1}{M_1} + \frac{E_2}{M_2} \right) V'_{\text{conf.}}(r) \right] \frac{1}{r} \right] \mathbf{L}(\mathbf{S_1} + \mathbf{S_2})$$

$$+ \int \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] \frac{V'_{\text{coul.}}(r)}{r} - \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] \frac{V'_{\text{conf.}}(r)}{r} \right] \frac{1}{r}$$

$$+ \left\{ \frac{1}{2} \left[\frac{1}{E_1(E_1 + M_1)} - \frac{1}{E_2(E_2 + M_2)} \right] \frac{\psi_{\text{Coull}}(r)}{r} - \frac{1}{2} \left[\frac{1}{M_1(E_1 + M_1)} - \frac{1}{M_2(E_2 + M_2)} \right] \frac{\psi_{\text{conf}}(r)}{r} \right] \right\}$$

$$+ \frac{\mu_d}{4} \left[\frac{1}{M_1^2} - \frac{1}{M_2^2} \right] \frac{V_{\text{conf.}}^{\prime V}(r)}{r} + \frac{1}{E_1 E_2} \frac{\mu_d}{4} \left(\frac{E_1}{M_1} - \frac{E_2}{M_2} \right) \frac{V_{\text{conf.}}^{\prime V}(r)}{r} \bigg\} \mathbf{L} (\mathbf{S_1} - \mathbf{S_2}) \bigg]_b$$

$$+ \left[\frac{1}{3E_1E_2} \left\{ \frac{1}{r} V_{\mathsf{Coul.}}^{\prime}(r) - V_{\mathsf{Coul.}}^{\prime\prime}(r) + \frac{\mu_d^2}{4} \frac{E_1E_2}{M_1M_2} \left(\frac{1}{r} V_{\mathsf{conf.}}^{\prime}(r) - V_{\mathsf{conf.}}^{\prime\prime}(r) \right) \right\} \times \left[\frac{3}{r^2} \left(\mathbf{S_1r} \right) \left(\mathbf{S_2r} \right) - \mathbf{S_1S_2} \right] \right]$$

Interactions I

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenki

Introduction

Model descriptio

Relativistic quark model

Matrix elements

Results

Experimen

Conclusion

Publications

\diamond Interaction V(r):

 $\bullet \ \langle L_T \: S_T \: J_T | \: V(r) \: | L_T' \: S_T' \: J_T' \rangle \equiv \langle L \: S \: J | \: V(r) \: | L' \: S' \: J' \rangle.$

• V(r) :

- $\bullet \left[\ldots \right]_{a} \equiv V_{spin-ind},$
- $L \cdot (S_{d_1} + S_{d_2}) \equiv LS_+$,

$$\bullet L \cdot (S_{d_1} - S_{d_2}) \equiv LS_{-1}$$

- $\frac{3}{r^2} \cdot \left(S_{d_1} r \right) \cdot \left(S_{d_2} r \right) S_{d_1} \cdot S_{d_2} \equiv T$,
- $\bullet \ S_{d_1} \cdot S_{d_2} \equiv SS.$

Interactions II

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenko

Introduction

Model descriptior

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

Symmetric compositions:

- {L, J} = {L', J'},
- LS_+ diagonal,
- $LS_{-} \equiv 0$,
- T non-diagonal,
- SS diagonal.
- Non-diagonal elements arise only for a few states. They are very small numerically and can be ignored. Thus, effectively:
 - $\{L, S, J\} = \{L', S', J'\},\$
 - T diagonal.

and there is no mixing between any states.

Interactions III

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenk

Introduction

Model descriptior

Relativistic quark model

Matrix elements

Results

Analysis

Experiment

Conclusion

◊ Asymmetric compositions:

- $\{L, J\} = \{L', J'\},\$
- LS_+ diagonal,
- LS₋ non-diagonal,
- T non-diagonal,
- SS diagonal.
- \diamond Significant mixing between the $n_r\,{}^SL_J$ and $n_r\,{}^{S'}L_J$ states arises.

Mixing I

◊ Notations:

• $M_{L=a, J=b} \equiv M_{a,b}$,

•
$$M_{L=a,\,J=b}(S=c,\,S'=d)\equiv M_{a,b}(c,d)$$
,

 $\bullet \ \Delta M_{a,b}(c,d) = \big[M_{a,b}(c,d) \big]_{\mathsf{full}} - \big[M_{a,b}(c,d) \big]_{spin-ind}.$

◊ P-wave:

• J = 1:
$$M_{1,1} = eig \begin{pmatrix} M_{1,1}(0,0) & \Delta M_{1,1}(0,1) & \Delta M_{1,1}(0,2) \\ \Delta M_{1,1}(1,0) & M_{1,1}(1,1) & \Delta M_{1,1}(1,2) \\ \Delta M_{1,1}(2,0) & \Delta M_{1,1}(2,1) & M_{1,1}(2,2) \end{pmatrix}$$

10 / 22

•
$$J = 2$$
: $M_{1,2} = eig \begin{pmatrix} M_{1,2}(1,1) & \Delta M_{1,2}(1,2) \\ \Delta M_{1,2}(2,1) & M_{1,2}(2,2) \end{pmatrix}$

heavy tetraquark spectroscopy Elena M. Savchenl

Introduction

Model descriptio

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

Mixing II

Relativistic description of fully heavy tetraquark spectroscopy

Introduction

Model descriptio

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<11/22

Elena M. Savchenko

Introduction

Model descriptio

Relativistic quark mode

Matrix elements

Result

Analysis

Experiment

Conclusion

Publications

 \diamond AA-configuration:

Table 1: Masses of the ground states (1S) and radial (up to 3S) and orbital (up to 1D) excitations of the asymmetric ($cc\bar{c}b$, $bc\bar{c}c$, $cc\bar{b}b$, $bb\bar{c}c$, $cb\bar{b}b$, fully heavy tetraquarks in the AA-configuration.

$d\overline{d}'$	nL	n _r	L	s	J	\mathbf{J}^{P}	$M_{cc\overline{c}\overline{b},bc\overline{c}}$	M _{ccbb} , bbcc	$M_{bb\overline{b}\overline{c},cb\overline{b}\overline{b}}$
	15	0	0	0	0	$\frac{0^+}{1^+}$	9,606 9,611	12,848 12,852	16,102 16,104
				2	2	2^+	9,620	12,859	16,108
	1P	0	1	1	0	0-	9,875	13,106	16,326
				0	1	1-	9,871 9,877	13,103 13,108	16,325 16,326
				1 2	2	2-	9,881 9,875 9,882	13,106 13,112	16,329 16,327 16,329
				2	3	3-	9,881	13,110	16,330
		1	0	0	0	0+	10,063	13,282	16,481
	2S			1	1	1+	10,064	13,282	16,481
				2	2	2 ⁺	10,064	13,283	16,481
	1D	0	2	2	0	0+	10,113	13,330	16,513
17				1	1	1+	10,111	13,328	16,513
				2	-		10,114	13,331	16,514
				1	2	2+	10,108	13,324	16,513
				2	~	1 °	10,117	13,334	16,515
				1	2	3+	10,111	13,327	16,515
				2	3		10,116	13,332	16,516
				2	4	4^{+}	10,114	13,329	16,516
	2P	1	1	1	0	0-	10,265	13,468	16,631
				0			10,258	13,461	16,629
				1	1	1-	10,264	13,468	16,630
				2			10,270	13,472	16,633
				1	2	2-	10,260	13,463	16,630
				2			10,208	13,470	10,032
	L	L		2	3	3	10,263	13,466	16,631
	3S	2	0	0	0	0+	10,442	13,629	16,765
				1	1	1+	10,442	13,629	16,765
				2	2	2 ⁺	10,440	13,628	16,764

Elena M. Savchenko

Introduction

Model descriptio

Relativistic quark mode

Matrix elements

Results

Analysis

Experimen

Conclusion

Publications

Asymmetric compositions mass spectra II

 $\diamond~S\overline{A}\text{, }A\overline{S}\text{-configuration:}$

 $\label{eq:table 2: Masses of the ground states (1S) and radial (up to 3S) and orbital (up to 1D) excitations of the asymmetric (cc\bar{c}\bar{b}, bc\bar{c}\bar{c}, bb\bar{b}\bar{c}, cb\bar{b}\bar{b}) fully heavy tetraquarks in the SA, AS-configuration.$

$d\overline{d}'$	nL	n _r	L	s	J	JP	$M_{cc\overline{c}\overline{b},bc\overline{c}\overline{c}}$	$M_{bb\overline{b}\overline{c},cb\overline{b}\overline{b}}$	
	1S	0	0	1 1+		1+	9,608	16,099	
	1P	0	1		0	0-	9,873	16,320	
					1	1-	9,872	16,321	
					2	2-	9,871	16,322	
	2S	1	0]	1	1+	10,057	16,474	
SA AS	1D	0	2	1	1	1+	10,108	16,507	
511, 115					2	2+	10,107	16,508	
					3	3+	10,105	16,509	
	2P	1	1		0		0-	10,262	16,624
					1	1-	10,260	16,624	
					2	2-	10,254	16,624	
	3S	2	0		1	1+	10,434	16,758	

Elena M. Savchenk

Introduction

Model description

Relativistic quark mode

Matrix element:

Results

Analysis

Experiment

Conclusion

Publications

 If energetically possible, the tetraquark will fall-apart into a meson pair through the quark rearrangement.

Threshold analysis: general I

$$\Delta = M_{QQ'\overline{QQ'}} - M_{threshold}^{lowest}$$

 $\diamond\,$ If $\Delta < 0,$ state is stable against fall-apart strong decays.

 \diamond The smaller $\Delta>0,$ the narrower is the state.

Elena M. Savchenk

Introduction

Model descriptior

Relativistic quark mode

Matrix elements

Results

Analysis Experiment Conclusion \diamond Many masses lie well above thresholds with $\Delta > 100$ MeV.

- \diamond Few masses lie in the $[-70 < \Delta < 100]$ MeV interval.
- Such behavior is seen for all quark compositions and all excitations.

Threshold analysis: general II

 It is consistent with the lack of significant advances in experimental searches.

Elena M. Savchenk

Introduction

Model descriptio

Relativistic quark mode

Matrix element:

Result

Analysis

Experiment

Conclusion

Publications

Threshold analysis: asymmetric

◊ The most promising to be stable states:

Table 3: Ground states (1S) and radial (up to 3S) and orbital (up to 1D) excitations of the most promising to be stable asymmetric (ccc\overline{b}, bb\overline{bc}, cb\overline{bb}) fully heavy tetraquarks and the corresponding meson-meson thresholds.

$\mathbf{Q}\mathbf{Q}'\overline{\mathbf{Q}}\mathbf{Q}'$	$d\overline{d}'$	nL	s	$\mathbf{J}^{\mathbf{P}}$	м	$M_{\rm thr}$	Δ	meson pair	
	AĀ	1P	1	2^{-}	9,875 9,882	9,831	44 51	$\chi_{c2}(1P)B_c^{\pm}$	
				3-	9,881	9,888	-7	$\chi_{c2}(1P)B_{c}^{*\pm}$	
$cc\overline{cb}$, bc\overline{cc}		1D	1	3+	10,111 10,116	10,117	-6 -1	$\psi_3(3842)B_c^{\pm}$	
			2	4^{+}	10,114	10,175	-61	$\psi_3(3842)B_c^{*\pm}$	
	$S\overline{A}, A\overline{S}$	1P	1	2-	9,871	9,831	40	$\chi_{c2}(1P)B_c^{\pm}$	
		1D		3+	10,105	10,117	-12	$\psi_3(3842)B_c^{\pm}$	
	AĀ	1P	2	3-	16,330	16,244	86	$\chi_{b2}(1P)B_c^{*\pm}$	
bbbc,		1D	1	$\frac{1}{2}$ 3 ⁺	16,515		19		
$cb\overline{b}\overline{b}$			2		16,516	16,496	20	$\Upsilon_2(1D)B_c^{*\pm}$	
	\overline{SA} , \overline{AS}		1		16,509		13		

ロトメ御トメミトメミトーミーのタ

Experimental data I

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenk

Introduction

Model descriptio

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

- ◊ In 2020 the LHCb Collaboration announced the discovery of the narrow resonance X(6900).
- \diamond Several other broad structures peaking at about 6.4 and 7.2~GeV were reported.
- ◇ In 2022 CMS and ATLAS Collaborations confirmed X(6900) and hinted on a few more states, including structures at 6.4 and 7.2 GeV.

Experimental data II

Relativistic description of fully heavy tetraquark spectroscopy

Elena M. Savchenko

Table 4: Exotic X states observed and hinted by the LHCb, ATLAS and CMS Collaborations in di- J/ψ and J/ψ $\psi(2S)$ invariant mass spectra and our candidates.

Current observation status and our predictions:

on	Collaboration St		M MeV	T MeV	Our candidates				
	Collaboration	June	111, 11160	1, Wev	nL	S	J^{PC}	M, MeV	
1	LHCb		6400 ÷ 6600						
: Iel	m_{0} , model A	X(6600)	$6410 \pm 80^{+80}_{-30}$	$590 \pm 350^{+120}_{-200}$	15 25	2	2^{++}	6367	
	ATLAS m ₀ , model B		$6650 \pm 20^{+30}_{-20}$	$440 \pm 50^{+60}_{-50}$					
	m ₁ , model A		$6630 \pm 50^{+80}_{-10}$	$350 \pm 110^{+110}_{-40}$					
	BW1, CMS no interference		$6552 \pm 10 \pm 12$	$124^{+32}_{-26} \pm 33$		0	0++	6782	
	BW1, interference		6638^{+43+16}_{-38-31}	$440^{+230+110}_{-200-240}$					
	NRSPS, no interference NRSPS, interference		$6905 \pm 11 \pm 7$	$80 \pm 19 \pm 33$	25				
			$6886 \pm 11 \pm 11$	$168\pm33\pm69$		2	2++	6868	
it	m ₂ , model A		$6860 \pm 30^{+10}_{-20}$	$110 \pm 50^{+20}_{-10}$		0	2++	6921	
۱	ATLAS m ₂ , model B	X(6900)	$6910 \pm 10 \pm 10$	$150 \pm 30 \pm 10$		2	0++	6899	
ns	${ m m_3}$, model eta		$6960\pm50\pm30$	$510 \pm 170^{+110}_{-100}$	1D	2	1++	6904	
	BW ₂ , no interference		$6927 \pm 9 \pm 4$	$122^{+24}_{-21} \pm 18$		2	2++	6915	
	BW ₂ , interference		6847^{+44+48}_{-28-20}	191_{-49-17}^{+66+25}					
	LHCb	×(7000)	7200 ÷ 7400			0	0++	7250	
	ATLAS m_3 , model α		$7220 \pm 30^{+10}_{-30}$	$90 \pm 60^{+60}_{-30}$	20	0	0	1255	
	BW ₃ , CMS no interference	A(7200)	$7287^{+20}_{-18} \pm 5$	$95^{+59}_{-40} \pm 19$	35	2	2++	7333	
	BW ₃ , interference		7134_{-25-15}^{+48+41}	97^{+40+29}_{-29-26}	(ð)	(≣)×	<.≣>	E 990	

Conclusion I

description of fully heavy tetraquark spectroscopy

Introduction

Model descriptio

Relativistic quark mode

Matrix elements

Result

Analysis

Experiment

Conclusion

Publications

 Masses of ground and excited states of fully heavy tetraquarks were calculated.

The finite diquark size was taken into account.

Kelativistic description of fully heavy tetraquark spectroscopy Elena M. Savchenk

Introduction

Model description

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

- Calculations for the asymmetric compositions were carried out.
- \diamond Mixing between the states with the same $\{L_T,\,J_T\}$, but different S_T via the LS_- and T interactions was taken into account.

Conclusion III

Relativistic description of fully heavy tetraquark spectroscopy Elena M. Savchenko

Introduction

Model descriptio

Relativistic quark mode

Matrix element:

Analysi

Experiment

Conclusion

Publications

- Asymmetric tetraquark states which are the most convenient for the experimental detection were identified.
- \diamond Masses of resonances in the di- J/ψ production detected at the LHCb, ATLAS and CMS agree with our predictions for the ground and excited $X_{cc\overline{cc}}$ states.

Publications

Relativistic description of full heavy tetraquark spectroscopy

Elena M. Savchenko

Introduction

Model descriptior

Relativistic quark mode

Matrix elements

Results

Analysis

Experiment

Conclusion

Publications

This talk is based on the following publications:

- Masses of the QQQQ tetraquarks in the relativistic diquark-antidiquark picture, Physical Review D, 2020, vol. 102, №11, p. 114030;
- Heavy Tetraquarks in the Relativistic Quark Model, Universe, 2021, vol. 7, №4, p. 94;
- Fully heavy tetraquark spectroscopy in relativistic quark model, Memoirs of the Faculty of Physics, 2022, №4, p. 2241512;
- Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model, Symmetry, 2022, vol. 14, №12, p. 2504;
- Relativistic description of the mass spectra of fully heavy tetraquarks, Memoirs of the Faculty of Physics, 2023, №4, p. 2341504.

Elena M. Savchenko

Introduction

Model descriptio

Relativistic quark mode

Matrix element

Results

Analysis

Experiment

Conclusion

Publications

Thank you for your attention!

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" grant №22-2-10-3-1.