

Study of charmonia production in $e^+e^$ annihilation at center-of-mass energies above 3.81 GeV

Olga Bakina Joint Institute for Nuclear Research, Dubna on behalf of the BESIII Collaboration

<u>The 21st Lomonosov Conference on Elementary Particle Physics</u> <u>Moscow, Russia, August, 24-30, 2023</u>

The BESIII experiment

 e^+e^- collisions in the $\tau\text{-charm}$ energy region, $L_{peak}=1{\times}10^{33}\,cm^{-2}~s^{-1}$

Data taking from 2009: the largest data sets at the $J/\psi,\,\psi(3686),\,{\rm and}\,\,\psi(3770)$ peaks; scan data at $\sqrt{s}=2.00-4.95~GeV$

Superconducting Solenoidal Magnet: 0.9/1.0 T

MDC

dE/dx: 6% $\sigma_{\rm p}/{\rm p:}~0.5\%~{\rm at}~1~{\rm GeV/c}$

TOF

σ_T: 68 ps 110 ps (60 ps)

 \mathbf{EMC}

 $\Delta E/E:$ 2.5% (5%) at 1 GeV

 σ_z : 0.6 cm/ \sqrt{E}

MUC

 $\sigma_{R\Phi}: 2 \text{ cm}$

Figure: The BESIII detector at BEPCII.

Charmonium(-like) states

The first observation of three charmonium-like states in $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$

Data: $\mathcal{L} = 17.9 \text{ fb}^{-1}, \sqrt{s} = 4.189 - 4.951 \text{ GeV}$

Phys.Rev.Lett. 130 (2023) 12, 121901

Channel: $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+ + cc., D^{*0}(D^{*-}) \rightarrow D^0(D^-)\pi^0, D^0 \rightarrow K^-\pi^+/K^-\pi^+\pi^0/K^-\pi^+\pi^+\pi^-, D^- \rightarrow K^+\pi^-\pi^-, \pi^0 \rightarrow \gamma\gamma$

Figure: The fit result to the dressed cross section line shape of $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$.

The first observation of a new X(3872) production process $e^+e^- \rightarrow \omega X(3872)$

Data: $\mathcal{L} = 4.7 \text{ fb}^{-1}, \sqrt{s} = 4.661 - 4.951 \text{ GeV}$

Phys.Rev.Lett. 130 (2023) 15, 151904

Channel: $e^+e^- \rightarrow \omega X(3872)$, $X(3872) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow l^+l^ (l = e, \mu)$, $\omega \rightarrow \pi^+\pi^-\pi^0$, $\pi^0 \rightarrow \gamma\gamma$

Figure: Fit to the M $(\pi^+\pi^-J/\psi)$ distribution. The filled histogram represents events from the ω and J/ψ two-dimensional sidebands.

Observation of charmonium-like states in the process $e^+e^- \rightarrow K^0{}_{\rm S}K^0{}_{\rm S}J/\psi$

Data: $\mathcal{L} = 21.2 \text{ fb}^{-1}, \sqrt{s} = 4.128 - 4.951 \text{ GeV}$

Phys.Rev.D 107 (2023) 9, 092005

Channel: $e^+e^- \rightarrow K^0_S K^0_S J/\psi$, $J/\psi \rightarrow l^+ l^- (l = e, \mu)$, $K^0_S \rightarrow \pi^+\pi^-$, $K^0_S \rightarrow \pi^+\pi^-$ or $\pi^0\pi^0$

Figure: Maximum likelihood fit to the dressed cross sections of $e^+e^- \rightarrow K^0{}_SK^0{}_SJ/\psi$. The mass and width of the Y(4500) state are fixed.

The first observation of charmonium-like states in the process $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$

Data: $\mathcal{L} = 11.3 \text{ fb}^{-1}, \sqrt{s} = 4.23 - 4.70 \text{ GeV}$

Phys.Rev.Lett. 129 (2022) 10, 102003

Channel: $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$, $\psi_2(3823) \rightarrow \gamma\chi_{c1}$, $\chi_{c1} \rightarrow \gamma J/\psi$, $J/\psi \rightarrow l^+ l^- (l = e, \mu)$

Search for charmonium-like states in the processes $e^+e^- \rightarrow \phi \chi_{c1,c2} \text{ (or } \gamma X) \rightarrow \gamma \phi J/\psi$

Data: $\mathcal{L} = 6.4 \text{ fb}^{-1}, \sqrt{s} = 4.600 - 4.951 \text{ GeV}$

JHEP 01 (2023) 132

Channel: $e^+e^- \rightarrow \gamma \phi J/\psi$, $J/\psi \rightarrow l^+ l^- (l = e, \mu)$, $\phi \rightarrow K^+K^-/K^0_S K^0_L$

Figure: (a) Fit to the cross section of $e^+e^- \rightarrow \varphi \chi_{c2}$ with a single BW. (b) Fit to the cross section of $e^+e^- \rightarrow \varphi \chi_{c2}$ with the coherent sum of a BW and continuum amplitude.

Prompt inclusive charmonium production

Goal:

- Test the NRQCD factorization hypothesis: the independence of Long Distance Matrix Elements (LDME) that describe the hadronization of the cc pair from the process (hadron-hadron collisions, electroproduction, or e⁺e⁻ annihilation);
- Clarify the contribution of the color octet channel in the range of \sqrt{s} below the J/ $\psi c\bar{c}$ threshold (~6 GeV): the color-octet LDMEs are non-zero if $\sigma > 10$ pb at $\sqrt{s} = 4.6 \sim 5.6$ GeV (Eur. Phys. J. C (2017) 77: 597);
- > Test if unknown channels/states exist.

Data only available at $\sqrt{s} = 10.6$ GeV:

- 2.5 ± 0.3 pb (BaBar)
- $\checkmark~1.5\pm0.2~pb~({\rm Belle})$
- $\checkmark~1.9\pm0.2~\text{pb}~(\text{CLEO})$

Figure: NRQCD factorization. The LDMEs $\langle O^{H}_{n} \rangle$ are determined from experimental data.

Prompt inclusive J/ψ production

Data: $\mathcal{L} = 22 \text{ fb}^{-1}, \sqrt{s} = 3.81 - 4.95 \text{ GeV}$

 $\begin{array}{l} \text{Channel: } J/\psi \rightarrow \mu^{+}\mu^{-}, \psi(3686) \rightarrow J/\psi \; \pi^{+}\pi^{-}, \; \chi_{cJ} \rightarrow \gamma J/\psi, \\ (J=1, \; 2) \end{array}$

- > Prompt J/ψ originates from sources other than known decays or initial-state radiation (ISR).
- Major background sources:
 - inclusive J/ψ decays of $\psi(3686)$ and $\chi_{cJ},\,(J=1,\,2);$
 - ISR return to the J/ψ and $\psi(3686)$ resonances.
- > The preliminary result for the prompt inclusive J/ψ production in the range $4.53 \sim 4.95$ GeV is

 $\sigma = 14.0 \pm 1.7_{
m stat}\,{
m pb}$

Prompt inclusive $\psi(3686)$ production

Data: $\mathcal{L} = 22 \text{ fb}^{-1}, \sqrt{s} = 4.01 - 4.95 \text{ GeV}$

Channel: $\psi(3686) \rightarrow J/\psi \ \pi^+\pi^-, \ J/\psi \rightarrow \mu^+\mu^-$

> Prompt $\psi(3686)$ originates from sources other than the ISR return to the $\psi(3686)$ resonance.

> The preliminary result for the prompt inclusive $\psi(3686)$ production in the range $4.84 \sim 4.95$ GeV is

 $\sigma = 16.9 \pm 2.8_{\rm stat} \ pb$

Figure: Prompt inclusive $\psi(3686)$ cross-sections.

Summary

- \succ The charmonia production is a proven tool for verifying the basics of QCD;
- > The BESIII experiment successfully applies e⁺e⁻ annihilation data sets to search for new exotic charmonium-like states and study their properties;
- > The prompt inclusive production of classical charmonia allows the BESIII experiment to test various theoretical models of the strong interaction at low energies, especially, NRQCD.

Thank you for your attention!