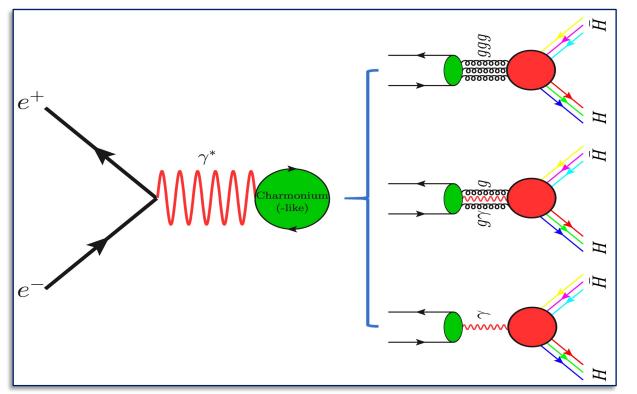


Hyperon Physics at BESIII

Xiongfei Wang (王雄飞) Lanzhou University (on behalf of BESIII Collaboration) The 21st Lomonosov Conference on Elementary Particle Physics Aug. 24-30, 2023. Moscow, Russia

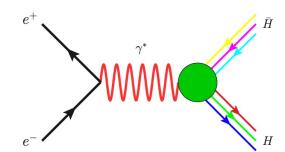
Outline

□ Introduction



□ Recent results
 > Spin polarization/CPV in Λ hyperon
 > Spin polarization/CPV in Σ hyperon
 > Spin polarization/CPV in Ξ hyperon
 □ Summary

See Prof. Haibo Li's talk for more hyperon physics results


HH production in Charmonium (-like) decay

Main Feynman Diagrams

X. F. Wang, RMFS, 3, 0308074 (2022) Provide a rich laboratory to prob non-pQCD, hyperon property/CPV, pQCD, etc.

HH production in e^+e^- annihilation One photon exchange

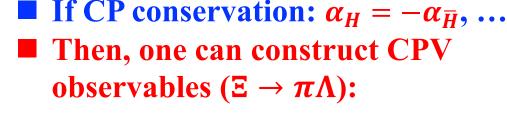
- Differential cross section with combination of $G_{E/M}$ $\frac{d\sigma^B(s)}{d\Omega} = \frac{\alpha^2 \beta C}{4s} [|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E(s)|^2 \sin^2 \theta]$
- Form factor ($G_{eff}, G_{E/M}$)

$$G_{\text{eff}}(s)| = \sqrt{\frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}} = \sqrt{\frac{\sigma^B(s)}{(1 + \frac{1}{2\tau}) \cdot (\frac{4\pi\alpha^2\beta}{3s})}}$$
$$R = |\frac{G_E(s)}{G_M(s)}| = \sqrt{\frac{\tau(1 - \eta)}{1 + \eta}} \quad \left(\frac{d\sigma^B(s)}{d\cos\theta} \propto 1 + \eta\cos^2\theta\right)$$

Understand the internal structure of hyperon
 Provide extra insights for Charmonium(-like) states

How to construct CPV observables

\Box Amplitude for $H_{1/2} \rightarrow H'_{1/2}M_{pse}$:


$$\mathcal{A} = \mathcal{S} + \mathcal{P}\boldsymbol{\sigma} \cdot \boldsymbol{\hat{n}} \quad - \begin{bmatrix} \mathcal{S} = |\mathcal{S}|e^{i(\delta_{\mathcal{S}} + \xi_{\mathcal{S}})} \\ \mathcal{P} = |\mathcal{P}|e^{i(\delta_{\mathcal{P}} + \xi_{\mathcal{P}})} \end{bmatrix}$$

Lee–Yang parameters in hyperon decay

 $\alpha_H = \frac{2Re(\mathcal{S}^*\mathcal{P})}{|\mathcal{S}|^2 + |\mathcal{P}|^2}$

 $\beta_H = \frac{2Im(\mathcal{S}^*\mathcal{P})}{|\mathcal{S}|^2 + |\mathcal{P}|^2}$

 $\gamma_H = \frac{|\mathcal{S}|^2 - |\mathcal{P}|^2}{|\mathcal{S}|^2 + |\mathcal{P}|^2}$

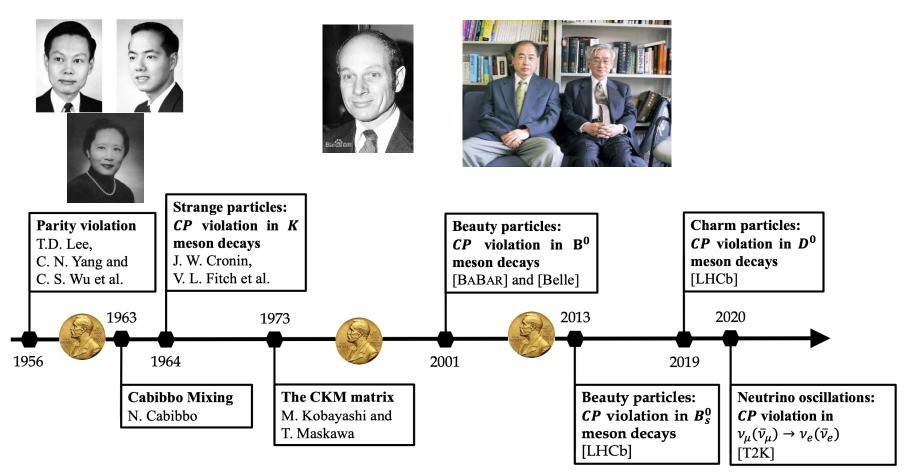
$$\beta_{H} = \frac{2Im(\mathcal{S}^{*}\mathcal{P})}{|\mathcal{S}|^{2} + |\mathcal{P}|^{2}}$$

$$\gamma_{H} = \frac{|\mathcal{S}|^{2} - |\mathcal{P}|^{2}}{|\mathcal{S}|^{2} + |\mathcal{P}|^{2}}$$

$$\alpha_{H}^{2} + \beta_{H}^{2} + \gamma_{H}^{2} = 1$$

$$\beta_{H} = \sqrt{1 - \alpha_{H}^{2}cos\phi_{H}}, \gamma_{H} = \sqrt{1 - \alpha_{H}^{2}sin\phi_{H}}$$

$$\phi_{H} = \tan^{-1}\frac{\beta_{H}}{\gamma_{H}}$$


$$A_{CP}^{\Xi} = \frac{\alpha_{\Xi} + \bar{\alpha}_{\Xi}}{\alpha_{\Xi} - \bar{\alpha}_{\Xi}}, \quad \delta_{P} - \delta_{S} \simeq \arctan\left(\frac{\beta_{\Xi}}{\alpha_{\Xi}}\right) \simeq \arctan\left(\frac{\sqrt{1 - \langle \alpha_{\Xi}^{2} \rangle}}{\langle \alpha_{\Xi} \rangle} \langle \phi_{\Xi} \rangle\right)$$

$$C_{CP}^{\Xi} = \frac{\gamma_{\Xi} + \bar{\gamma}_{\Xi}}{\gamma_{\Xi} - \bar{\gamma}_{\Xi}}, \quad \xi_{P} - \xi_{S} \simeq \frac{\beta_{\Xi} + \bar{\beta}_{\Xi}}{\alpha_{\Xi} - \bar{\alpha}_{\Xi}} \simeq \frac{\sqrt{1 - \langle \alpha_{\Xi}^{2} \rangle}}{\langle \alpha_{\Xi} \rangle} \Delta \phi_{CP}^{\Xi}$$

T. D. Lee, C. N. Yang. Phys. Rev. 108, 1645 (1957)

 $\phi_H = \tan^{-1} \frac{\beta_H}{M}$

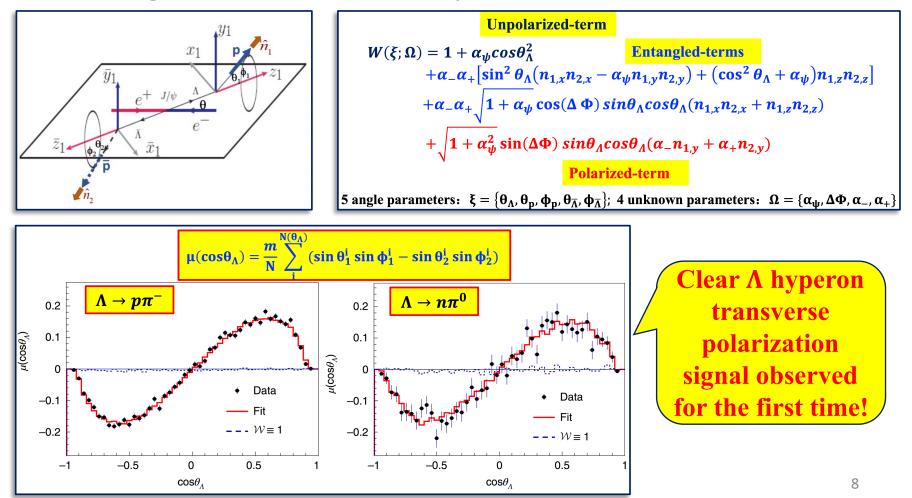
Roadmap of CP violation

Symmetry 2023, 15(1), 214

All are consistent with CKM theory in SM
 But no evidence in hyperon system (CPVSM ~ 10⁻⁴)

Outline

Introduction


Recent results > Spin polarization/CPV in Λ hyperon > Spin polarization/CPV in Σ hyperon > Spin polarization/CPV in Ξ hyperon □ Summary

Observation of Λ spin polarization in $J/\psi \rightarrow \Lambda \overline{\Lambda}$

Data Sample: 1.3 B J/ψ

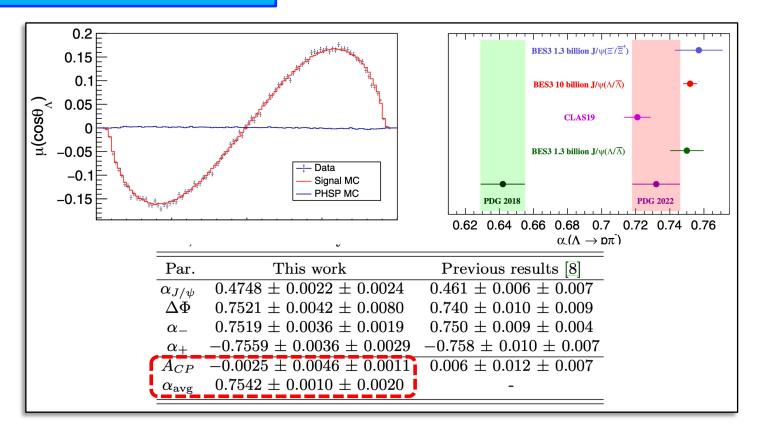
Nature Physics 15, 631 (2019)

DA 5D angular distribution analysis

Observation of Λ spin polarization in $J/\psi \rightarrow \Lambda \overline{\Lambda}$

Data Sample: 1.3B J/ψ

Nature Physics 15, 631 (2019)

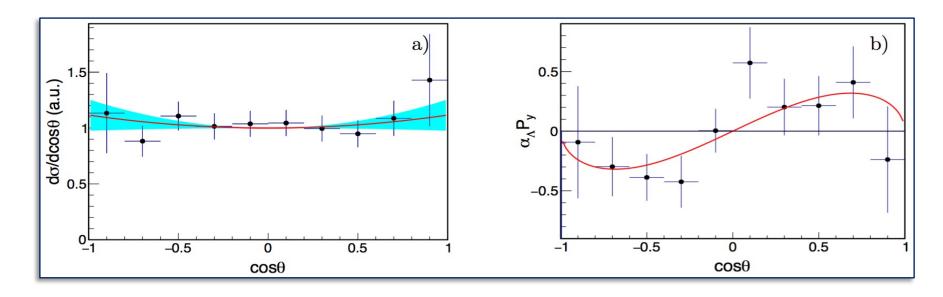

Table 1 Summary of the results			First observation of a
Parameters	This work	Previous results	transverse polarization
$lpha_w$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 (ref. ¹⁴)	
$\Delta \Phi$	42.4±0.6±0.5°	-	
α_	$0.750 \pm 0.009 \pm 0.004$	0.642±0.013 (ref. ⁶)	$>5\sigma$ difference (17%)
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71±0.08 (ref. ⁶)	higher than) to PDG
$\overline{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	-	
A _{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006±0.021 (ref. ⁶)	Test of CP violation:
$\overline{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-	$\int A_{CP} = \frac{\alpha + \alpha_+}{\alpha \alpha_+}$
	Test of A	$I = \frac{3}{2}$ contribution	$u u_+$

First observation of hyperon spin polarization, and first test of CPV in Λ decay with precision over previous measurements

Most precise measurement of Λ spin polarization and CPV in $J/\psi\to\Lambda\bar\Lambda$

Data Sample: 10B J/ψ

Phys. Rev. Lett. 129, 131801 (2022)



CP is still conservation within 1σ uncertainty
 Results are consistent with previous measurements, and with higher precison (~10⁻³)

Measurement of Λ spin polarization in $e^+e^- \rightarrow \Lambda\overline{\Lambda}$

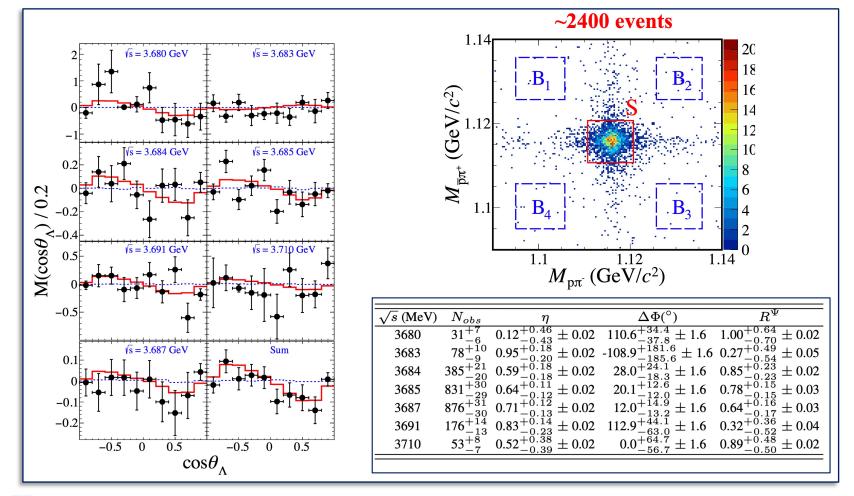
Data Sample: 66.9 pb⁻¹ @ \sqrt{s} =2.396GeV

PRL 123,122003 (2019)

$$\Delta \Phi = \Phi_{\rm E} - \Phi_{M} = (37 \pm 12 \pm 6)^{o}$$

$$\sigma = 118.7 \pm 5.3 \pm 5.1 \, \rm pb$$

$$|G_{\rm eff.}| = 0.123 \pm 0.003 \pm 0.003$$

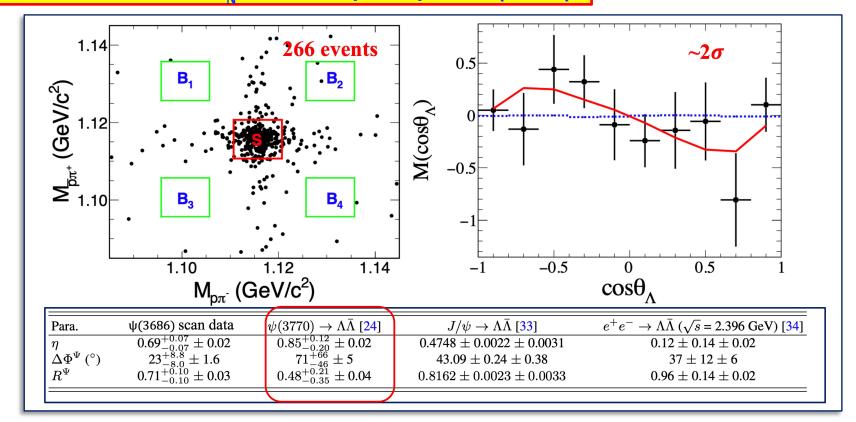

$$R = \left|\frac{G_{E}}{G_{M}}\right| = 0.96 \pm 0.14 \pm 0.02$$

First complete determination of baryon time-like EMFFs
 More information for understanding ΛΛ production near threshold

Λ hyperon spin polarization around ψ(3686)

Data Sample: $333 \ pb^{-1} \sqrt{s} = 3.68 - 3.71 GeV$

arXiv:2303.00271


CP is fixed to be zero, more information for understanding the production mechanism of $\Lambda\overline{\Lambda}$ in $\psi(3686)$

The Λ spin polarization in $\psi(3770) \rightarrow \Lambda \overline{\Lambda}$

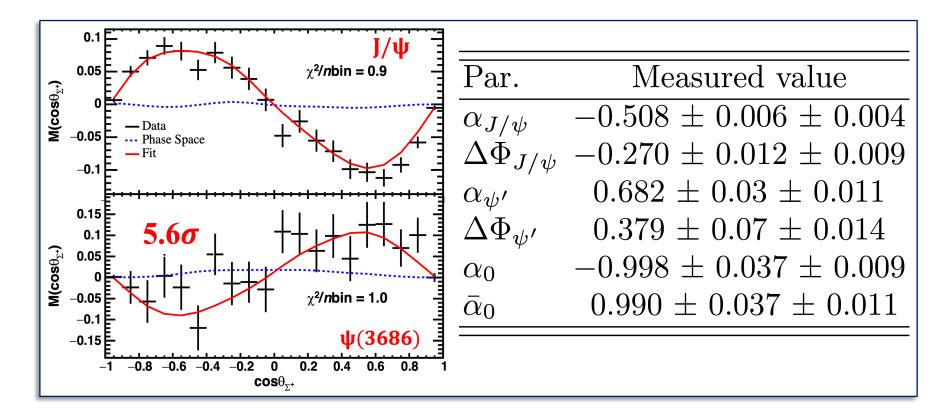
Data Sample: 2.9 fb⁻¹ ψ (3770)

PRD(Letter) 105,L011101 (2022)

Moment: $M(\cos\theta) = \frac{m}{N} \sum_{i}^{N(\theta_{\Sigma})} (\sin\theta_{p}^{i} \sin\phi_{p}^{i} - \sin\theta_{\overline{p}}^{i} \sin\phi_{\overline{p}}^{i})$

CP is fixed to be zero, more information for understanding the Λ hyperon structure, the production of of $\Lambda\overline{\Lambda}$ in $\psi(3770)$

Outline

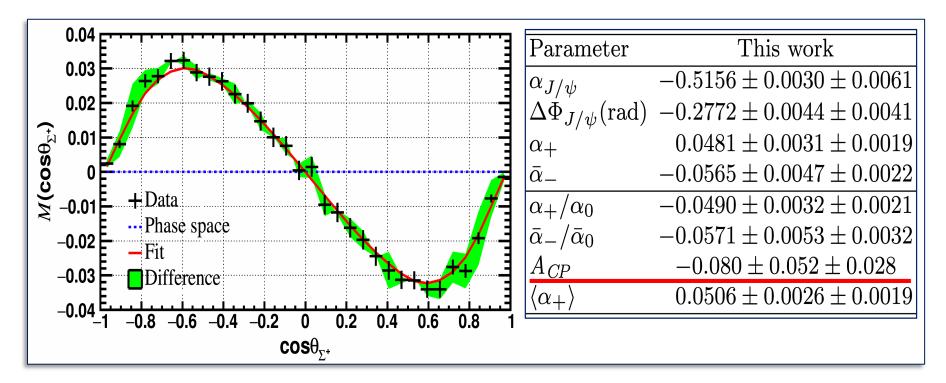


Caracterization CPV in Λ hyperon Spin polarization/CPV in Σ hyperon Spin polarization/CPV in Ξ hyperon Summary

Observation of $\Sigma^+(p\pi^0)$ spin polarization in $\psi \to \Sigma^+ \overline{\Sigma}^-$

Data Sample: 1.3B J/ ψ & 448M ψ (3686)

Phys. Rev. Lett. 125, 052004 (2020)

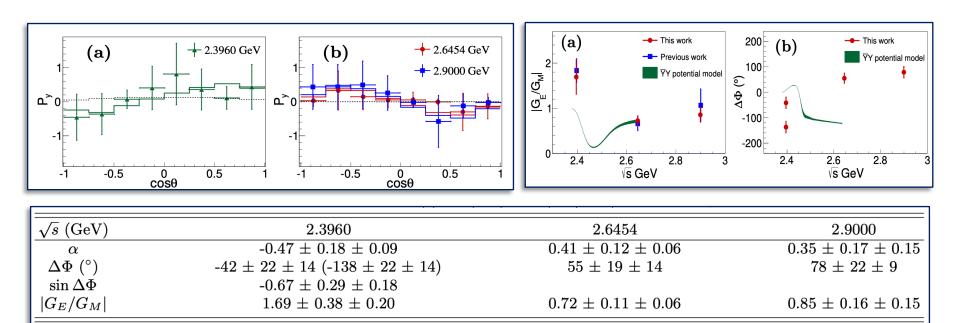

Test of CP violation:

$$A_{CP}^{\Sigma^{+}(p\pi^{0})} = \frac{\alpha_{0} + \overline{\alpha}_{0}}{\alpha_{0} - \overline{\alpha}_{0}} = -0.015 \pm 0.037 \pm 0.008 \approx 0?$$
¹⁵

Observation of $\Sigma^+(n\pi^+)$ spin polarization in $J/\psi \to \Sigma^+\overline{\Sigma}^-$

Data Sample: 10B J/ ψ

arXiv:2304.14655



U Both $\alpha_{J/\Psi}$ and $\Delta \Phi$ are consistent with $\Sigma^+(\mathbf{p}\pi^0)$ mode **Test of CP violation:** $A_{CP}^{\Sigma^{+}(n\pi^{+})} = \frac{\alpha_{0} + \overline{\alpha}_{0}}{\alpha_{0} - \overline{\alpha}_{0}} = -0.080 \pm 0.052 \pm 0.028 \approx 0?$

Measurement of Σ^+ spin polarization in $e^+e^-\to \Sigma^+\overline{\Sigma}{}^-$

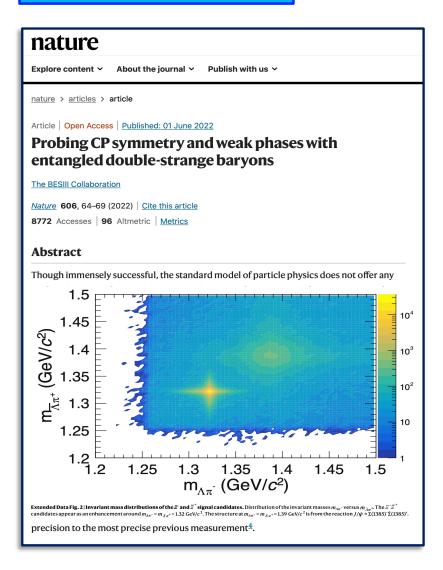
Data Sample: 66.9 pb⁻¹ @ \sqrt{s} =2.396, 2.65 and 2.9GeV

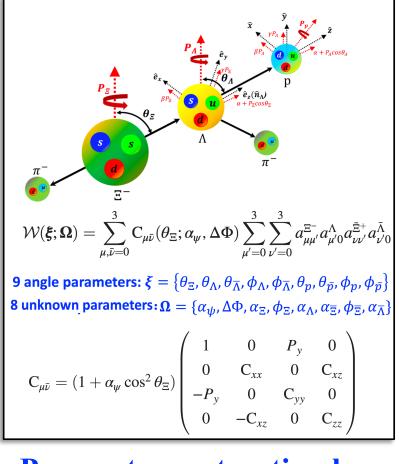
arXiv:2307.15894

- The Σ⁺hyperon EMFF is first explored in a wide four-momentum transfer range with q² from 5.7 to 8.4 GeV
- $\Box \ \Delta \Phi < 0 \text{ at } \sqrt{s} = 2.39 \text{ GeV}, \Delta \Phi > 0 \text{ at } \sqrt{s} = 2.64 \text{ and } 2.9 \text{GeV}, \Delta \Phi = 0$ exist between these points? an important input for understanding the asymptotic behavior [A. Mangoni *et al*, PRD104, 116016 (2021)]

Outline

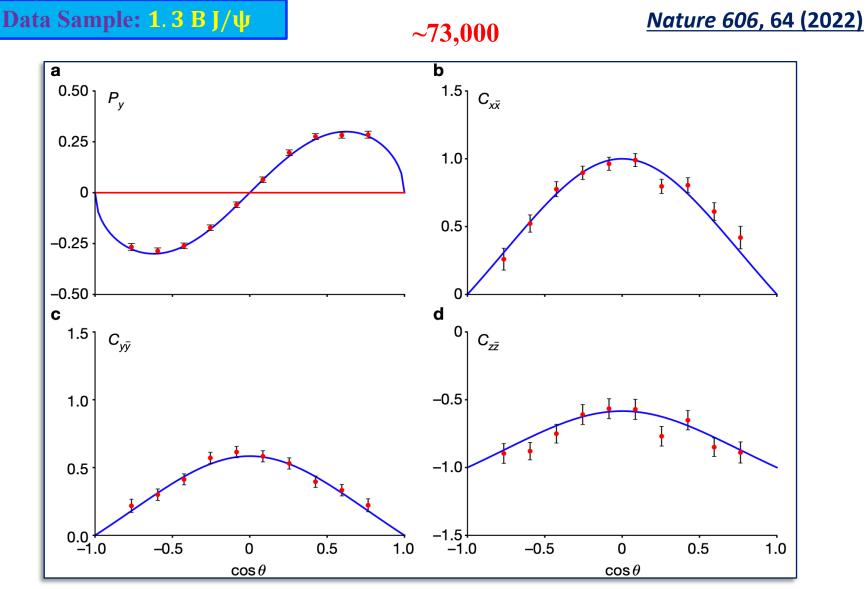
Introduction

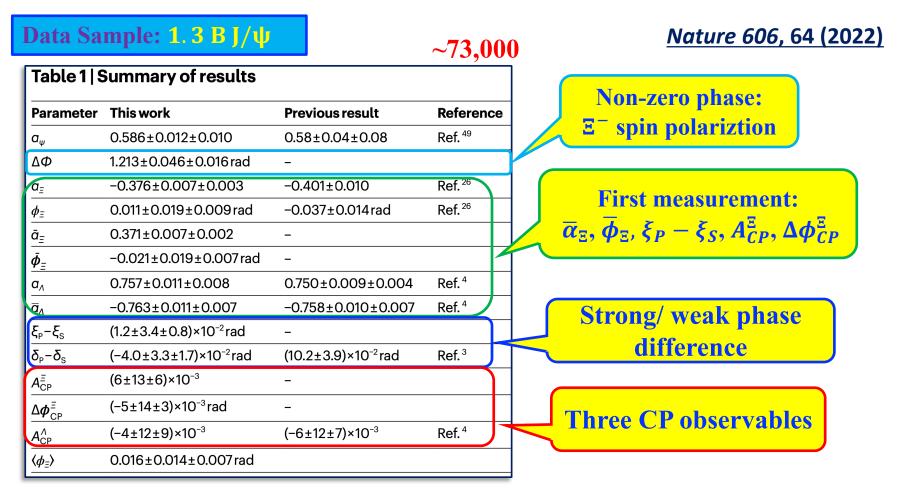

Recent results


Spin polarization/CPV in Λ hyperon
 Spin polarization/CPV in Σ hyperon
 Spin polarization/CPV in Ξ hyperon
 Summary

Ξ^- hyperon spin polarization and CPV in $J/\psi \to \Xi^-\overline{\Xi}^+$

Data Sample: 1.3B J/\


Nature 606, 64 (2022)



Parameters extraction by a 9D angular distribution analysis

Ξ^- hyperon spin polarization and CPV in $J/\psi \to \Xi^-\overline{\Xi}^+$

Ξ^- hyperon spin polarization and CPV test in $J/\psi \to \Xi^- \overline{\Xi}^+$

Observation of Ξ⁻ spin polarization, non-zero weak phase difference
 Most precise test for CPV on strange hyperon decay
 Update with 10 billion J/ψ is ongoing

Ξ^- spin polarization and CPV in $\psi(3686) \rightarrow \Xi^-\overline{\Xi}^+$ PRD(Letter) 106, L091101 (2022) Data Sample: 448 M ψ (3686) ~5000 events 1.36 60 0.4 50 $M_{\pi^+\overline{\Lambda}}$ (GeV/ c^2) 1.34 0.2 > 7**σ** 0.8 40 ^{5.0 ک}ر $\mathbf{P}_{\mathbf{v}}$ 30 0.4 -0.220 1.3 0.2 -0.410 0 ^{[2} -1 1.28 L 1.28 -0.5 0.5 -0.5 0.5 $\cos\theta_{\pi}$ $\cos\theta_{\pi}$ 1.3 1.32 1.34 1.36 $M_{\pi^*\Lambda}$ (GeV/ c^2) $\psi(3686) \rightarrow \Xi^- \bar{\Xi}^+$ $J/\psi \to \Xi^- \bar{\Xi}^+$ Parameter $0.586 \pm 0.012 \pm 0.010$ $0.693 \pm 0.048 \pm 0.049$ α_{ψ} -0.20.8 $\Delta \Phi$ (rad) $1.213 \pm 0.046 \pm 0.016$ $0.667 \pm 0.111 \pm 0.058$ U^ک^{0.6'} $\overset{-0.4}{\overset{\mathbf{Z}}{\mathbf{U}}}_{-0.6}$

 $\alpha_{\Xi^{-}}$

 α_{Ξ^+}

 ϕ_{Ξ^-} (rad)

 $\phi_{\bar{\Xi}+}$ (rad)

 $-0.344 \pm 0.025 \pm 0.007$

 $0.355 \pm 0.025 \pm 0.002$

 $0.023 \pm 0.074 \pm 0.003$

 $\delta_p - \delta_s (10^{-2} \text{ rad}) - 19.5 \pm 13.4 \pm 0.7$

 $A_{CP,\Xi}$ (10⁻³) -14.7 ± 50.8 ± 10.3

 $\Delta \phi_{CP}$ (10⁻³ rad) -49.9 ± 52.1 ± 2.6

 $-0.123 \pm 0.073 \pm 0.004 \ -0.021 \pm 0.019 \pm 0.007$

D Both $\alpha_{\psi(3686)}$ and $\Delta \Phi$ are very different from the J/ ψ peak **Other parameters and CPV values are consistent with the** J/ψ peak.

-0.8

-1

 $\cos^{0}\theta_{\Xi}$

0.5

-0.5

0.4

0.2

-0.5

0

 $\cos\theta_{\pi}$

0.5

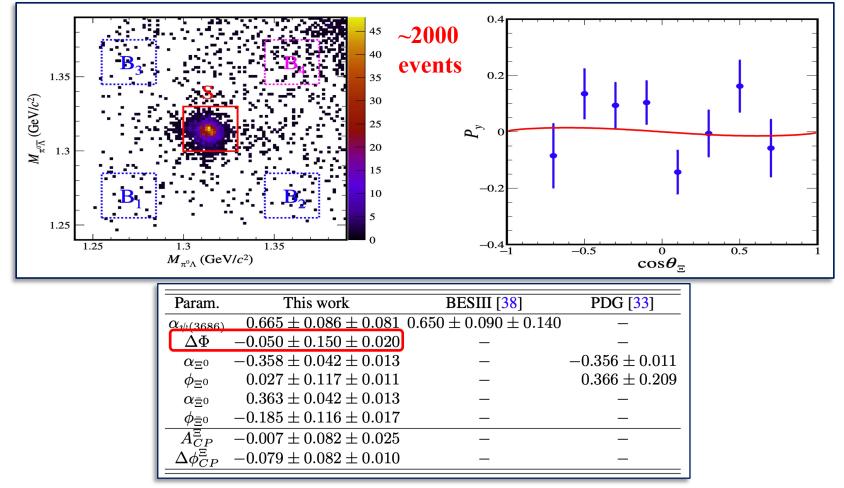
 $-0.376 \pm 0.007 \pm 0.003$

 $0.371 \pm 0.007 \pm 0.002$

 $0.011 \pm 0.019 \pm 0.009$

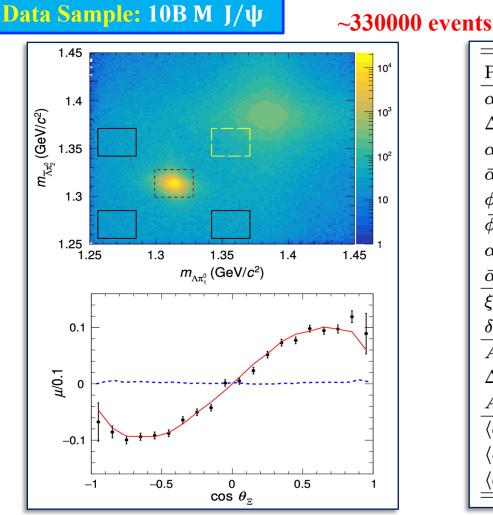
 $-4.0 \pm 3.3 \pm 1.7$

 $6.0 \pm 13.4 \pm 5.6$


 $-4.8 \pm 13.7 \pm 2.9$

Ξ^0 hyperon spin polarization and CPV in $\psi(3686) \rightarrow \Xi^0 \overline{\Xi}^0$

Data Sample: 448 M ψ (3686)


PRD(Letter) 108, L011101 (2023)

23

No spin polarization observed (limited statistics?)
 Fisrt simultaneous determination of Ξ⁰ and Ξ⁰ decay parameters
 CP is conservation within 1σ uncertainty

Ξ^0 hyperon spin polarization and CPV in $J/\psi \to \Xi^0 \overline{\Xi}^0$

Parameter	This work	
$\alpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	
$\Delta \Phi({ m rad})$	$1.168 \pm 0.019 \pm 0.018$	
$lpha_{\Xi}$	$-0.3750\pm0.0034\pm0.0016$	
$ar{lpha}_{\Xi}$	$0.3790 \pm 0.0034 \pm 0.0021$	
$\phi_{\Xi}(\mathrm{rad})$	$0.0051 \pm 0.0096 \pm 0.0018$	
$ar{\phi}_{\Xi}(\mathrm{rad})$	$-0.0053 \pm 0.0097 \pm 0.0019$	
$lpha_\Lambda$	$0.7551 \pm 0.0052 \pm 0.0023$	
$ar{lpha}_\Lambda$	$-0.7448 \pm 0.0052 \pm 0.0017$	
$\overline{\xi_P - \xi_S(\mathrm{rad})}$	$(0.0 \pm 1.7 \pm 0.2) imes 10^{-2}$	
$\delta_P - \delta_S(\mathrm{rad})$	$(-1.3\pm1.7\pm0.4) imes10^{-2}$	
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	
$\Delta \phi^{\Xi}_{CP}(\mathrm{rad})$	$(-0.1\pm 6.9\pm 0.9) imes 10^{-3}$	
A^{Λ}_{CP}	$(6.9\pm5.8\pm1.8) imes10^{-3}$	
$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	
$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	
$\langle lpha_\Lambda angle$	$0.7499 \pm 0.0029 \pm 0.0013$	

arXiv:2305.09218

Most precise determination of Ξ⁰ hyperon decay parameters, consistent with the ψ(3686) decay
 CP is still conservation within 1σ uncertainty (10⁻³) ²⁴

Summary

■ BESIII is successfully operating since 2008 ✓ Collected large data samples in the τ-charm physics region ✓ Continues to take data in coming years

- Many studies for hyperon spin polarization and CPV in Charmonium decay and in e⁺e⁻ annihilation achieved:
 - ✓ Observation of hyperon transverse polarization
 - **\checkmark** CPV study in Λ, Σ, Ξ hyperon
 - ✓ Still need more experimental/theoretical efforts

More new results are on the way!

Thanks for your attention!