

Charmed baryon decays at BESIII

Ying Liu Lanzhou University

(on behalf of BESIII Collaboration) Lomonosov Conferences on Elementary Particle Physics, Aug. 24-30, 2023 at the Moscow State University in Russia

Outline

> The lightest charm baryon Λ_c^+

- Charm baryon physics at BESIII
 - Λ_c^+ semi-leptonic decays
 - Λ_c^+ hadronic decays

U	d Tu2	
	c	

Λ_c^+ : The lightest charmed baryon spectroscopy

≻Naive quark model picture:

- A heavy quark (c) with an unexcited spin-zero diquark (u-d)
- Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark (HQET)
- ≻Cornerstone of charmed baryons:
- Most of the charmed baryons will eventually decay to Λ_c^+
- Supportant input to study the decays of *b* flavor hadron involving Λ_c^+ final state and V_{ub} calculations
- > The Λ_c^+ is one of important tagging hadrons in c-quark counting in the productions at high energy experiment
- ≻Total measured BF (PDG2022) is ~70%
- Poorly understood compared to charm mesons
- Excellent platform for understanding non-perturbative QCD and weak decay mechanism

BESIII data taking at Λ_c^+ pair threshold

- >Measurement using the threshold pair-productions via e^+e^- annihilations is unique: the most simple and straightforward
- ≻Double-tag (DT) method can be used:
- Lower backgrounds and kinematic relation to constrain missing particle
- Most systematic uncertainties in tag side can be cancelled

Production near threshold and tag technique

➤ Single Tag (ST)

$$\Delta E = E_{\Lambda_c^+} - E_{beam}$$
$$M_{BC} = \sqrt{E_{beam}^2 - \left|\vec{p}_{\Lambda_c^+}\right|^2}$$

Double Tags (DT)

$$U_{miss} = E_{miss} - |\vec{p}_{miss}|$$

 \succ Branching Fraction (\mathcal{B})

$$N^{ST} = 2N_{\rm tot}B_{tag}\varepsilon^{ST}$$

$$N^{semi} = 2N_{tot}B_{tag}B_{SL}\varepsilon_{ij}^{DT}$$
$$\mathcal{B}_{SL} = \frac{N^{semi}}{N^{ST} \times \epsilon}$$

Clean sample of ST charmed baryons can be fully reconstructed by hadronic decays with large BFs
 Based on this, one can access to absolute BFs and dynamics in the decays

Study of $\Lambda_c^+ \to \Lambda e^+ \nu_e$ decays

Comparisons between measurement and theoretical predictions:

	$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) \ [\%]$
Constituent quark model (HONR) [8]	4.25
Light-front approach [9]	1.63
Covariant quark model [10]	2.78
Relativistic quark model [11]	3.25
Non-relativistic quark model [12]	3.84
Light-cone sum rule [13]	3.0 ± 0.3
Lattice QCD [14]	3.80 ± 0.22
SU(3) [15]	3.6 ± 0.4
Light-front constituent quark model $\left[16 \right]$	3.36 ± 0.87
MIT bag model [16]	3.48
Light-front quark model [17]	4.04 ± 0.75
This work	$3.56 \pm 0.11 \pm 0.07$

 $\mathcal{B}[\Lambda_{c}^{+} \to \Lambda e^{+} \nu_{e}] = (3.56 \pm 0.11 \pm 0.07)\%$ $|V_{cs}| = 0.936 \pm 0.017_{\mathcal{B}} \pm 0.024_{LQCD} \pm 0.007_{\tau_{A_{c}}}$

- \blacktriangleright Best precision BF to date: twofold improvement, larger than 2σ deviation with some theoretical models
- ≻ Consistent with $|V_{cs}| = 0.939 \pm 0.038$ measured in $D \rightarrow K \ell \nu_{\ell}$ decays within 1σ
- \triangleright Measurement of $|V_{cs}|$ via $\Lambda_c \rightarrow \Lambda \ell \nu_\ell$ is an important consistency test for the SM and a probe for new physics

Study of the kinematics in $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ decay

> Helicity amplitude and form factors

$$\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{e}d\cos\theta_{p}d\chi} = \frac{G_{F}^{2}|V_{cs}|^{2}}{2(2\pi)^{4}} \cdot \frac{Pq^{2}}{24M_{\Lambda_{c}}^{2}} \times \left\{ \frac{3}{8}(1-\cos\theta_{e})^{2}|H_{\frac{1}{2}1}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + \frac{3}{8}(1+\cos\theta_{e})^{2}|H_{-\frac{1}{2}-1}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p}) + \frac{3}{4}\sin^{2}\theta_{e}[|H_{\frac{1}{2}0}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p})+|H_{-\frac{1}{2}0}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p})] + \frac{3}{2\sqrt{2}}\alpha_{\Lambda}\cos\chi\sin\theta_{e}\sin\theta_{p} \times \left[(1-\cos\theta_{e})H_{-\frac{1}{2}0}H_{\frac{1}{2}1}+(1+\cos\theta_{e})H_{\frac{1}{2}0}H_{-\frac{1}{2}-1}]\right\} (2)$$

$$\begin{split} H_{\frac{1}{2}1}^{V} &= \sqrt{2Q_{-}} f_{\perp}(q^{2}), \quad H_{\frac{1}{2}1}^{A} = \sqrt{2Q_{+}} g_{\perp}(q^{2}), \\ H_{\frac{1}{2}0}^{V} &= \sqrt{Q_{-}/q^{2}} f_{+}(q^{2}) \left(M_{\Lambda_{c}} + M_{\Lambda}\right), \\ H_{\frac{1}{2}0}^{A} &= \sqrt{Q_{+}/q^{2}} g_{+}(q^{2}) \left(M_{\Lambda_{c}} - M_{\Lambda}\right), \end{split}$$

Comparisons between data and LQCD prediction Phys. Rev. Lett. 129, 231803 (2022)

- > The first direct comparisons on the differential decay rates and form factors with LQCD calculations
- > Different kinematic behavior compared to LQCD can be seen at high q^2 and low q^2 regions
- The results provide important inputs in understanding the SL decays of charmed baryons and help to calibrate the theoretical calculation

Steeper slope

Gentle slope

LQCD prediction: Phys. Rev. Lett. 118, 082001 (2017)

Observation of $\Lambda_c^+ \rightarrow pK^-e^+\nu_e$

> Second leptonic decay of Λ_c^+ is observed

 $\mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu_e) = (0.88 \pm 0.15 \pm 0.07) \times 10^{-3}$ 8.2 σ

- > This work provides a clear confirmation that the SL Λ_c^+ decays are not saturated by the $\Lambda \ell^+ \nu_\ell$ final state
- > Study of pK^- mass spectrum can be used to understand the nature of excited Λ^* states

Evidence of $\Lambda_c^+ \to \Lambda^* (\to p)$	$(\mathbf{K}^{-})\mathbf{e}^{+}\mathbf{v}$	Phys. Rev. D 106, 112010 (202	
$\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda \ (1520) \ e^+ \nu_e) = (1.02 \pm 0.02)$	$52 \pm 0.11) \times 10^{-3}$		
$\mathcal{B}(\Lambda_c^+ \to \Lambda \ (1520)[\to pK^-]e^+\nu_e) = (0.23 \pm 0.12 \pm 0.02) \times 10^{-3}$			
$\mathcal{B}(\Lambda_c^+ \to \Lambda \ (1405)[\to pK^-]e^+\nu_e) = (0.42 \pm 0.19 \pm 0.04) \times 10^{-3}$ hypotheses of BF differ by			
	all consistent within 2σ	factor of roughly 100 times	
	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e)$	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1405)e^+\nu_e)$	
Constituent quark model [8]	1.01	3.04	
Molecular state [9]		0.02	
Nonrelativistic quark model $[10]$	0.60	2.43	
Lattice QCD $[12, 13]$	0.512 ± 0.082		
Measurement	$1.02 \pm 0.52 \pm 0.11$	$\frac{0.42\pm0.19\pm0.04}{\mathcal{B}(\Lambda(1405)\to pK^-)}$	

➢ Prospect: With larger samples, amplitude analysis of pK^- mass spectrum, form factor and to understand the Λ^{*} internal structure of the contributing Λ states would be preformed

Inclusive SL decay $\Lambda_c^+ \to e^+ X$

- > Further Λ_c^+ SL decays may exist
- Comparing with the charge-averaged non-strange D SL decay width is helpful for testing current theoretical predictions
- Unfolding method to obtain true signal yields. The matrix can be obtained using selected control samples

RS (WS): the charge of the track is required to be opposite (equal) to the ST Λ_c^- candidate.

$$\begin{bmatrix} N_e^{\text{obs}} \\ N_e^{\text{obs}} \\ N_{\pi}^{\text{obs}} \\ N_K^{\text{obs}} \\ N_p^{\text{obs}} \end{bmatrix} = \begin{bmatrix} P_{e \to e} & P_{\pi \to e} & P_{K \to e} & P_{p \to e} \\ P_{e \to \pi} & P_{\pi \to \pi} & P_{K \to \pi} & P_{p \to \pi} \\ P_{e \to K} & P_{\pi \to K} & P_{K \to K} & P_{p \to K} \\ P_{e \to p} & P_{\pi \to p} & P_{K \to p} & P_{p \to p} \end{bmatrix} \begin{bmatrix} N_e^{\text{true}} \\ N_\pi^{\text{true}} \\ N_K^{\text{true}} \\ N_p^{\text{true}} \end{bmatrix}$$

Correction (see text)	RS yields	WS yields
Observed yields	3706 ± 71	394 ± 31
PID unfolding yields	3865 ± 80	376 ± 33
WS subtraction	3489 ± 87	
Tracking unfolding yields	4333 ± 107	
Extrapolation	4692 ± 117	

Inclusive SL decay $\Lambda_c^+ \to e^+ X$

The precision is improved by threefold [Phys. Rev. Lett. 121, 251801 (2018)]

 $\begin{aligned} \mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e) &= (4.06 \pm 0.10 \pm 0.09)\% \\ \mathcal{B}(\Lambda_c^+ \to \Lambda e^+\nu_e) &= (3.56 \pm 0.11 \pm 0.07)\% \\ \mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu_e) &= (0.88 \pm 0.15 \pm 0.07) \times 10^{-3} \end{aligned}$

Unknow decay: 0.5%

Measurement of $\Lambda_c^+ \rightarrow n\pi^+$

- Singly-Cabbibo-Suppressed(SCS) decay, which can't ignore non-factorizable contributions
- Studies of nonfactorizable components are critical to understand the underlining dynamics of charmed baryon decays

4.5 fb⁻¹ data @ 4.6 - 4.7 GeV

Measurement of $\Lambda_c^+ \rightarrow n\pi^+$

 $> \mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2 \pm 0.4) \times 10^{-4} \qquad R = \frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+)}{\mathcal{B}(\Lambda_c^+ \to p\pi^0)} > 7.2 \text{ at } 90\% \text{ C. L.}$

Use $\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5} at 90\%$ C. L. of Belle from PRD 103, 072004 (2021)

$\mathcal{B}(\Lambda_c^+ \to n\pi^+)$	R	Reference	phenomenological models
4	2	PRD 55, 7067 (1997)	
9	2	PRD 93, 056008 (2016)	SU(3) flavor symmetry model
11.3 ± 2.9	2	PRD 97, 073006 (2018)	
8 or 9	4.5 or 8.0	PRD 49, 3417 (1994)	constituent quark model
2.66	3.5	PRD 97, 074028 (2018)	a dynamical calculation based on pole model and current-algebra
6.1±2.0	4.7	PLB 790, 225 (2019)	SU(3) flavor symmetry including the contributions from $O(15)$
7.7 ± 2.0	9.6	JHEP 02 (2020) 165	topological-diagram approach

> The branching fraction and R value disagrees with the most predictions of phenomenological models, implying that the non-factorization contributions are overestimated

Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

- > First amplitude analysis of charmed baryon multi-hadronic decays
- \succ Crucial test on $\Lambda_c^+ \rightarrow \Lambda \rho(770), \Sigma(1385)\pi^+$ which suffer non-factorizable contributions
- \succ The single tag method is applied to select $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ events
- > BF and decay asymmetry parameters are determined

Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

Helicity amplitude fit implemented by TF-PWA (https://github.com/jiangyi15/tf-pwa)

	Theoretical calculation		This work	PDG
$10^2 imes \mathcal{B}(\Lambda_c^+ o \Lambda ho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0.52	< 6
$10^3 imes \mathcal{B}(\Lambda_c^+ o \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	$2.2 \pm 0.4 \; [17]$	5.86 ± 0.80	
$10^3 imes \mathcal{B}(\Lambda_c^+ o \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.070	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91\substack{+0.4\\-0.1}$	$_{10}^{45}$ [17]	-0.917 ± 0.089	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91\substack{+0.4\\-0.1}$	${}^{45}_{10} \ [17]$	-0.79 ± 0.11	

JHEP 12 (2022), 033

VA

Other Λ_c^+ results

- Semi-leptonic decays
 - $\Lambda_c^+ \to \Lambda \ \mu^+ \nu_\mu$
 - $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e$ and $p K_s \pi^- e^+ \nu_e$
- ➢ Hadronic decays
 - $\Lambda_c^+ \to p\eta$ and $\Lambda_c^+ \to p\omega$
 - $\Lambda_c^+ \to \Sigma^+ h^+ h^-(\pi^0)$
 - $\Lambda_c^+ \to \bar{n} X$
 - $\Lambda_c^+ \rightarrow n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^-$
 - $\Lambda_c^+ \to \Lambda K^+$
 - $\Lambda_c^+ \to \Sigma^0 K^+ and \Sigma^+ K_S^0$
 - $\Lambda_c^+ \to p\eta'$
- \succ Rare decays
 - $\Lambda_c^+ \to \Sigma^+ \gamma$
 - $\Lambda_c^+ \to p \gamma'$

[arXiv:2306.02624] [PLB843,137993(2023)]

[arXiv:2307.09266] [arXiv:2304.09405] [PRD108, L031101(2023)] [CPC47,023001(2023)] [PRD106,L111101(2022)] [PRD 106, 052003 (2022)] [PRD106,072002(2022)]

[PRD107,052002(2023)] [PRD106,072008(2022)]

Summary

- > BESIII has made pretty good progresses on the exploration of the charmed baryon Λ_c^+
- > Near threshold production is unique to directly measure the Λ_c^+ decay properties
- > Opportunities to study other charmed baryons ($\Sigma_c, \Xi_c, \Omega_c$) in the BEPCII-U phase

Energy thresholds			
$e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c^-$	4.74 GeV		
$e^+e^- \to \Lambda_c^+ \overline{\Sigma}_c \pi$	4.88GeV		
$e^+e^- \to \Sigma_c \ \overline{\Sigma}_c$	4.91 GeV		
$e^+e^- \to \Xi_c \overline{\Xi}_c$	4.94 GeV		
$e^+e^- \rightarrow \Omega_c \overline{\Omega}_c$	5.40GeV		

	cross-sections	at different \sqrt{s}	at different \sqrt{s}	
4.6 - 4.9 GeV	Charmed baryon/ XYZ	0.56 fb^{-1}	15 fb^{-1}	1490/600 days
	cross-sections	at $4.6 \mathrm{GeV}$	at different \sqrt{s}	
$4.74 \mathrm{GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	100/40 days
$4.91 \mathrm{GeV}$	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	120/50 days
4.95 GeV	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days