

CMS Experiment at the LHC, CERN Data recorded: 2017-Jul-31 02:43:27.876032 GMT Run / Event / LS: 300156 / 28539391 / 26

CMS results on heavy flavour spectroscopy and production

Kirill Ivanov¹ on behalf of the CMS Collaboration

kirill.ivanov@cern.ch

¹ Moscow Institute of Physics and Technology (MIPT)

XXI Lomonosov Conference

28th August 2023

Introduction and overview

- The CMS Experiment
- Measurement of the dependence of the hadron production fraction ratio f_s/f_u on *B* meson kinematic variables in proton-proton collisions at $\sqrt{s} = 13$ TeV
- Observation of a new excited beauty strange baryon decaying to $\Xi_b^- \pi^+ \pi^-$
- Conclusion and summary

The CMS Experiment

- The CMS Experiment at the LHC was designed mainly for high- p_T physics (Higgs, top-quark, SM precision measurement, New Physics searches etc)
- However, robust muon system, good p_T resolution and perfect vertex reconstruction provide promising opportunities for heavy flavour and quarkonia-related analyses

Kirill Ivanov, Conf-MIPT 2021

Measurement of the dependence of the hadron production fraction ratio f_s/f_u on B meson kinematic variables in proton-proton collisions at $\sqrt{s} = 13$ TeV

<u>CMS-BPH-21-001</u>, arXiv:2212.02309, accepted by Phys. Rev. Lett.

Production (fragmentation) fractions

• When b quark is produced in colliders, it forms one of bhadrons: a $B_{(s)}$ meson or a b baryon (hadronization process)

- Their ratios are very widely-used for the branching fractions measurements, especially f_s/f_d – thank to b-factories (such as Belle and BaBar) B^+/B^0 decays are measured very well from $e^+e^- \rightarrow \Upsilon(4S)$ (given equal production $f_{\mu} = f_d$ from isospin symmetry)
- Thus B_s^0 branching can be measured w.r.t. to a one with B^+ or B^0 , however f_s/f_d term enter such a ratio, often resulting to be a leading uncertainty due to low precision High precision is essential for robust $B_s^0 \to \mu^+\mu^-$ measurement $\mathscr{B}\left(B_s^0 \to J/\psi\phi\right) = (10.50 \pm 0.13 \pm 0.64 \pm 0.82) \times 10^{-4}$ LHCb, Phys.Rev.D 87 (2013) 7, 072004

Previous results of f_s/f_d studies

- Hard to predict these values and their ratios from QCD theory experimental input is needed!
- However, they are expected to be universal and fundamental properties w/o any conditions dependence (unless the opposite is observed)

- Recently LHCb observed *f_s/f_d* dependence from *B* meson *p_T* (6σ significance)
 No η dependence has been found
- In agreement with their earlier result; ATLAS 7 TeV result does not have precision to confirm a p_T trend \longrightarrow new studies are required

CMS Analysis Overview

- In this paper we perform relative f_s , f_u and f_d measurements in kinematic region of $p_T > 12$ GeV and |y| < 2.4, using CMS 2018 data ($\sqrt{s} = 13$ TeV, $61.6 fb^{-1}$) J/ψ
- The following decays are reconstructed: $B^+ \rightarrow J/\psi K^+$ $B^0 \rightarrow J/\psi K^{*0}, K^{*0} \rightarrow K^+ \pi^ B^0_s \rightarrow J/\psi \phi, \phi \rightarrow K^+ K^-$
- Events are selected using trigger, requiring a dimuon J/ψ vertex, displaced from PV, with a track compatible to be produced in this vertex
- B meson candidate obtain from kinematic vertex fit of 2 muons and 1 or 2 tracks with dimuon mass constrained to PDG J/ψ

We measure the following value: $R_{s} = \frac{f_{s}}{f_{u}} \frac{\mathscr{B}\left(B_{s}^{0} \to J/\psi\phi\right) \mathscr{B}\left(\phi \to K^{+}K^{-}\right)}{\mathscr{B}\left(B^{+} \to J/\psi K^{+}\right)} = \frac{N_{B_{s}^{0}}}{N_{B^{+}}} \frac{\epsilon_{B^{+}}}{\epsilon_{B_{s}^{0}}}$

 $(f_s/f_u \text{ ratio is multiplied by } B_s^0 \text{ branching fr. which is strongly correlated with } f_s)$

• Similar measurement is performed for R_d (or f_d/f_u , which we can report directly)

р

from MC

simulation

 K^+

B mesons signals

- Data sample is split into 12 p_T bins or 7 |y| bins, fit is performed in each bin to extract the signal yields
- Fit is constructed as double Gaussian w/ common mean for signal and exponential for the background
- Reflections from B⁰ → J/ψK⁺π⁻, B⁺ → J/ψπ⁺, K-π swap present due to lack of hadron ID; their shapes obtained from simulation
 Partially-reconstructed B → J/ψK⁺X described with error function
 Cabibbo-suppressed B⁰_s → J/ψK^{*0} also presents; described with shape similar to B⁰

Kirill Ivanov, Conf-MIPT 2021

CMS results on heavy flavour

CMS results for f_s/f_u and f_d/f_u

Splitting *B* mesons signals into 12 p_T bins or 7 |y| bins, we extract the needed yields

Clear p_T dependence is observed for f_s/f_u at low- p_T , confirming LHCb trend!

- However, starting from $p_T \gtrsim 18 \text{ GeV}$ f_s/f_u seems to be flat from p_T Average $R_s = 0.1102 \pm 0.0027$
- This result provides crucial input to our f_s/f_u understanding and improves $B_s^0 \rightarrow \mu^+\mu^-$ measurements
- On the other hand, f_d/f_u ratio is very consistent with unity w/o any dependence Average $f_d/f_u = 0.998 \pm 0.063$
- First direct measurement of isospin invariance in *B* meson production at hadron colliders!

Kirill Ivanov, Conf-MIPT 2021

Observation of a new excited beauty strange baryon decaying to $\Xi_b^- \pi^+ \pi^-$

<u>CMS-BPH-20-004</u>, <u>Phys. Rev. Lett. 126 (2021) 252003</u>

q denotes u or d quarks for Ξ_b^0 or Ξ_b^- . L = 1 is the orbital excitation between the light diquark qs and heavy b quark.

q denotes u or d quarks for Ξ_b^0 or Ξ_b^- . L = 1 is the orbital excitation between the light diquark qs and heavy b quark.

Previous results of Ξ_{b} **resonances**

CMS results on heavy flavour

CMS Analysis Overview

- Use full Run-2 CMS data ($140 fb^{-1}$, $\sqrt{s} = 13$ TeV) to search for a new $\Xi_b^{**-} \to \Xi_b^{*0} \pi^- \to \Xi_b^- \pi^+ \pi^-$ resonance, basing on <u>theoretical predictions</u> and excited Ξ_c^{**} <u>charm analogies</u>
- Ξ_b^- ground state is reconstructed via $J/\psi \Xi^-$ and $J/\psi \Lambda K^-$ channels, where latter one also presents the partially reconstructed $J/\psi \Sigma^0 K^-$ component

Ξ_b^- signals

- Signal: double-Gaussian (from MC); Background: linear/exponential function Partially reconstructed $\Xi_b^- \to J/\psi \Sigma^0 K^-$ decay: asymmetrical Gaussian (from MC) photon from $\Sigma^0 \to \Lambda \gamma$ is too soft to be reconstructed
- For $\Xi_b^- \pi^+ \pi^-$ studies, fully reconstructed Ξ_b^- = green lines, ±54(±27) MeV for $J/\psi \Xi^- (J/\psi \Lambda K^-)$ channels, partially reconstructed Ξ_b^- = purple lines, [5.63, 5.76] GeV window

CMS results on heavy flavour

Study of $\Xi_b^- \pi \pi$ invariant mass

- Plots with no requirements of Ξ_b^{*0} in the $\Xi_b^- \pi^+$ mass, with <u>opposite-sign (OS, circles)</u> and <u>same-sign (SS, band)</u> pions.
- No other peaks except 6100 near the threshold are observed in both OS and SS distribution
- Blue vertical line the mass where LHCb observed $\Xi_b (6227)^-$ in the $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$ decay channels (we see nothing here)

Kirill Ivanov, Conf-MIPT 2021

Observation of $\Xi_b(6100)^{-1}$

Relativistic Breit-Wigner convolved with <u>MC resolution</u>,

background: threshold function $(x - x_0)^{\alpha}$. Simultaneous fit: common mass and natural width

- First observation of a new state, excited beauty strange baryon $\Xi_b(6100)^-$, expected to be the lightest orbital excitation with $J^P = 3/2^-$, beauty analogue of $\Xi_c(2815)^0$
- Systematics studies: include variations of <u>fit model</u>, <u>fit range</u>, possible <u>data/MC</u> <u>difference</u>

Mass difference variable $\Delta M = M(\Xi_b^-\pi^+\pi^-) - M(\Xi_b^-) - 2m_{\pi^\pm}^{\text{PDG}}$ and PV refit technique (see backup) are used to improve detector resolution

systematics are implemented in Γ calculation

Recent confirmation from LHCb

- Our $\Xi_b(6100)^-$ baryon is confirmed, 2 new states with Ξ_b^0 observed and precise measurements reported
- Immense statistics of Ξ_b provided: \approx 18 000 of $\Xi_b^$ v.s. \approx 2 000 at CMS (and \approx 30 000 of Ξ_b^0 inaccessible to us)

State	Observ.	. Value (MeV)
$\overline{\Xi_b(6100)^-}$	Q_0	$23.6 \pm 0.11 \pm 0.02$
	Γ	$0.94 \pm 0.30 \pm 0.08$
	m_0	$6099.74 \pm 0.11 \pm 0.02 \ \pm 0.6 \ (\varXi_b^-)$

Reported parameters are in excellent agreement with us!

Conclusion and summary

- CMS Experiment is actively contributing to the heavy flavour physics, providing both production and spectroscopy state-of-the-art results
- We report precise measurement of f_s/f_d ratio in the central rapidity region, confirming LHCb' p_T -depending trend for low- p_T
 - f_d/f_u ratio is also measured (consistent with unity), providing first direct measurement of isospin invariance in *B* meson production at hadron colliders
- New beauty strange baryon is observed at mass 6100.3 ± 0.6 MeV in $\Xi_b^- \pi^+ \pi^-$ invariant mass spectrum and natural width < 1.9 MeV @ 95% CL
 - Consistent with being the lightest orbitally excited Ξ_b^- baryon with $J^P = 3/2^$ and orbital momentum L = 1 between b quark and light diquark ds
- Stay tuned for the new beautiful and charm results from the CMS Collaboration!

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-08 02:36:01.428900 GMT Run / Event / LS: 322430 / 379062570 / 243

Thank you for your attention!

Do you have any questions?

Backup slides

Kirill Ivanov, Conf-MIPT 2021

CMS results on heavy flavour

21

Theoretical prediction for Ξ_b^{**-}

Table 1: Theoretical predictions for Ξ_{b}^{**-} mass and natural width, given in MeV.

- [15] is <u>Phys. Rev. D 96, 116016 (2017)</u>
- [16] is <u>Phys. Rev. D 99, 094016 (2019)</u>
- [22] is <u>Phys. Rev. D 98, 031502 (2018)</u>

FIG. 2: Partial and total strong decay widths of the 1*P*-wave Ξ_b states as functions of their mass. The solid curves stand for the total widths.

TABLE VII: Partial widths (MeV) and branching fractions for the strong decays of the 1*P*-wave states in the Ξ_c and Ξ_b families.

$ ^{2S+1}L_{\lambda}$	$J^{P} angle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i	State	Channel	Γ_i (MeV)	\mathcal{B}_i
$ ^{2}P_{\lambda}\frac{1}{2}$	\rangle	$\Xi_{c}(2790)$	$\Xi_c'\pi$	3.61	100%	$\Xi_b(6120)$	$\Xi_b'\pi$	2.84	98.61%
			$\Xi_c^{\prime*}\pi$	3.9×10^{-4}	$\simeq 0.0\%$		$\Xi_b^{\prime *}\pi$	0.04	1.39%
			total	3.61			total	2.88	
$ ^{2}P_{\lambda}\frac{3}{2}^{-1}$	\rangle	$\Xi_{c}(2815)$	$\Xi_c'\pi$	0.31	14.69%	$\Xi_b(6130)$	$\Xi_b'\pi$	0.07	2.37%
	14	61	$\Xi_c^*\pi$	1.80	85.31%		$\Xi_b^{\prime *}\pi$	2.88	97.63%
	L.	<u>ગ</u>	total	2.11			total	2.95	

The $\Xi_c(2815) \rightarrow \Xi_c(2645)\pi \rightarrow \Xi_c\pi\pi$ analogy

Kirill Ivanov, Conf-MIPT 2021

previously observed Ξ_{h}^{*0})

Kirill Ivanov, Conf-MIPT 2021

Observation of a new $\Xi_b(6100)^-$ baryon

Kirill Ivanov, Conf-MIPT 2021

Observation of a new $\Xi_b(6100)^-$ baryon

Different approaches for exited B-hadrons mass calculation

- We can extract "raw" 4-momenta from prompt PV's tracks or make exited *B*-hadron vertex fit and extract 4-momenta from fit for signal enhancement (used in CMS $B_c^+\pi^+\pi^-$ PRL 122 (2019) 132001 analysis)
- More complicated approach for exited *B*-hadrons study was applied for the current $\Xi_b^- \pi^+ \pi^-$ study (analogously to recent CMS $\Lambda_b^0 \pi^+ \pi^-$ <u>PLB 803</u> (2020) 135345 analysis):
- We fit ALL the tracks forming the PV + *B*-candidate (about 20-100 tracks in each) and use 4-momenta from this vertex fit. The PV refitting procedure has improved the $\Xi_b^- \pi^+ \pi^-$ mass resolution by up to 50%

