Recent CMS results on rare heavy flavour decays

Lomonosov 2023: XXI Lomonosov Conference on Elementary Particle Physics 24-30 Aug 2023

<u>Maksim Sergeev¹</u> and Sergey Polikarpov^{1,2} on behalf of the CMS Collaboration

1 NRNU MEPHI, 2 LPI RAS

Observation of $B^0 \rightarrow \psi(2S)K_S^0\pi^+\pi^-$ and $B_s^0 \rightarrow \psi(2S)K_S^0$ decays <u>Eur.Phys.J.C 82 (2022) 499</u>

Motivation

Many exotic states have been observed in the last 15 years, and the nature of most of them is still unclear

Z _c (3900)±	BELLE
Z _c (4200) [±]	<u>BaBar</u>
Z _c (4430) [±]	<u>BELLE</u>
X(3915)	<u>BELLE</u>
P(4457)+	<u>LHCb</u>
Z _{cs} (4220)+	<u>LHCb</u>

Decays with charmonium in the final state could be a good laboratory for CPviolation measurements.

$\psi(2S)K_s^0$ and $\psi(2S)K_s^0\pi^+\pi^-$ invariant mass distributions

4

Intermediate 2body invariant mass distributions

No unexpected features, only known K* and p resonances

Results

Intermediate 3body invariant mass distributions

Measured branching fraction ratios:

$$R_{\rm s} = \frac{\mathcal{B}(\mathrm{B}_{\rm s}^{0} \to \psi(2\mathrm{S})\mathrm{K}_{\rm S}^{0})}{\mathcal{B}(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}_{\rm S}^{0})} =$$
$$= (3.33 \pm 0.69\,(\mathrm{stat}) \pm 0.11\,(\mathrm{syst}) \pm 0.34\,(f_{\rm s}/f_{\rm d})) \times 10^{-2}$$

$$\begin{split} R_{\pi^{+}\pi^{-}} &= \frac{\mathcal{B}(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}_{\mathrm{S}}^{0}\pi^{+}\pi^{-})}{\mathcal{B}(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}_{\mathrm{S}}^{0})} = \\ &= 0.480 \pm 0.013 \, (\mathrm{stat}) \pm 0.032 \, (\mathrm{syst}) \end{split}$$

~ same order of magnitude as in decays with J/ψ instead of $\psi(2S)$

Observation of the rare decay of the η meson to four muons

arXiv:2305.04904

$\eta \rightarrow \mu^+ \mu^-$ in scouting data

 Around 4.5 x 10⁶ signal η→μ⁺μ⁻ events in the scouting data!

B(η→µ+µ−) ~ 6 x 10⁻⁶!

 \rightarrow ~10¹²**n** produced in "CMS acceptance" (even more after correcting for efficiency)

 $\eta \rightarrow \mu^+ \mu^-$ signal is used to calibrate η meson production vs. p_{τ} and y in MC

$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ observation

- A clear narrow peak of ~50 events, near the kinematic threshold
- Fit with Crystall-Ball+ threshold
- Significance > 5σ
 - Several misreconstructed decays were shown to not be able to produce such a peak

 $(m_{4\mu} - 4m_{\mu})^{\beta}$

$\eta {\rightarrow} \mu^{+} \mu^{-} \mu^{+} \mu^{-}$

P

Fully-leptonic decays of pseudoscalar mesons η and η' :

- Allow precision tests of the SM
- Impact the knowledge of hadronic correction (g-2)_u

So far, the following modes have been observed: $\eta \rightarrow \mu^+\mu^-(\underline{SERPUKHOV-134, 1980}), \eta \rightarrow e^+e^-e^+e^-(\underline{KLOE-2, 2011}), \eta' \rightarrow e^+e^-e^+e^-(\underline{BESIII, 2022})$

We present the first observation of $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$, and measurements

$$\begin{aligned} &\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.86 \pm 0.14\,(\text{stat}) \pm 0.12\,(\text{syst})) \times 10^{-3} \\ &\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8\,(\text{stat}) \pm 0.7\,(\text{syst}) \,\pm 0.7\,(\mathcal{B}_{2\mu})) \times 10^{-9} \end{aligned}$$

In agreement with SM prediction: 3.98±0.15 • 10⁻⁹ [Chin.Phys.C42 (2018) 2, 023109]

Observation of the $\Lambda_b^0 \to J/\psi \Xi^- K^+$ decay

<u>CMS-PAS-BPH-22-002</u>

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-22-002/index.html

LHCB 2015 *Phys. Rev. Lett.* 115 (2015) 072001 1544 citations!

Introduction

b hadron decays with charmonium and a baryon allow searching for pentaquarks in ψ +baryon system in the intermediate resonance structure

LHCb, **2015**: studied $J/\psi p$ mass from $\Lambda_b^0 \rightarrow J/\psi p K^-$

(full 6D angular analysis with interference between resonances)

Observed P_c(4450)⁺ and P_c(4380)⁺ pentaguark candidates!

Confirmed later with a <u>model-independent analysis</u> (2016) <u>Also seen</u> in CS $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ decay (2016)

2019: adding Run-2 data, **9x** Λ_b^0 yield. From 1D fit of J/ ψ p mass distribution, 4450 peak is now split into two

+ observe a new resonance, $P_c(4312)^+$

Introduction

In addition to $J/\psi p$ system, also the $J/\psi \Lambda$ system was investigated.

2020: 6D full angular analysis by LHCb of Ξ_b^- →J/ψΛK⁻ decay <u>revealed evidence</u> for hidden-charm strange pentaquark P_{cs}(4459)⁰

<u>CMS-BPH-18-005</u>, <u>JHEP 12 (2019) 100</u>: Based on Run-1, CMS studied the $B^- \rightarrow J/\psi \Lambda p^-$ decay, <u>data is</u> <u>consistent with no pentaquarks</u> in $J/\psi \Lambda$ or $J/\psi p$

LHCb 2022: with 6D amplitude analysis of $B^- \rightarrow J/\psi \Lambda p^-$ decay, observe new strange pentaquark $P_{cs}(4338)^0 \rightarrow J/\psi \Lambda$ no significant states decaying to $J/\psi p$

It is interesting to note that $J/\psi \Lambda$ pentaquarks are found to be generally **narrower** than $J/\psi p$ states (7-17 vs ~10-200 MeV). Even narrower pentaquarks are expected for <u>doubly-strange</u> hidden-charm P_{css} . Such states can decay into e.g. $J/\psi \equiv$

This motivates our search for decays having $J/\psi\Xi^-$ in the decay products, i.e. $\Lambda_b^0 \to J/\psi\Xi^-K^+$

Data and event selection

pp collisions 13 TeV, L~140 fb⁻¹ (2016-2018)

Mass constraints applied on $J/\psi \rightarrow \mu^+\mu^-$, $\Lambda \rightarrow p\pi^-$ and $\Xi^- \rightarrow \Lambda \pi^ \Lambda_h^0$ obtained from vertex fit of $\mu^+\mu^-\Xi^-K^+$

Normalization channel is chosen according to the similar decay topology, to reduce the systematic uncertainties associated with the track reconstruction:

 $\Lambda_b^0 \rightarrow \psi(2S) \Lambda$, with vertex fit of $\mu^+ \mu^- \Lambda \pi^+ \pi^+$ J/ $\psi \pi^+ \pi^-$ mass close to $M^{PDG}(\psi(2S))$

 Λ_b^0 vertex should be away from PV in transverse plane

PV selected by smallest angle between Λ_b^0 momentum and the line joining PV and Λ_b^0 decay vertex

 Λ^0_b baryon momentum should be aligned with that line

р

Calculation of branching fraction ratio

$$\mathcal{B}(\psi(2S) \to J/\psi \,\pi \,\pi) = (34.68 \pm 0.30)\%$$
$$\mathcal{B}(\Xi \to \Lambda \,\pi) = (99.887 \pm 0.035)\%$$

Invariant mass distributions

$J/\psi \Xi^{-}K^{+}$ Intermediate invariant mass distributions

Systematic uncertainties

Source	Uncertainty (%)
Signal model	3.9 Vary the fit model deviation in $P = syst - upcortainty$
Background model	6.7 6.7
Non- $\psi(2S)$ contribution	2.5 — In $\Lambda_b^0 \rightarrow \Lambda J/\psi \pi^+ \pi^+$ sample, evaluated vis sPlot
Finite size of MC	5.6
Tracking efficiency	2.3 — Different p _T spectra between signal and norm. channels
Alternative selection criteria	33.5
Total	35.0
	<u>Conservative</u> estimate, based on variation of cuts near trigger/reconstruction thresholds. Accounts for correlation between the sample and its subsample

First observation of $\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$

- The first decay to have $J/\psi \Xi^-$ system in decay products
- No significant narrow peaks in $J/\psi\Xi^-$ mass distribution
 - With 46 signal events, our sensitivity is very limited
- Measured branching fraction ratio:

<u>CMS-PAS-BPH-22-002</u>

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi \Xi^{-} K^{+})}{\mathcal{B}(\Lambda_{b}^{0} \to \psi(2S)\Lambda)} = (2.54 \pm 0.78 \,(\text{stat}) \pm 0.89 \,(\text{syst}) \pm 0.02 (\mathcal{B}))\%$$

~ same order of magnitude as $\Lambda_b^0 \rightarrow J/\psi \Lambda \phi$ decay that has similar Feynman diagram:

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda \phi)}{\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)} = (8.26 \pm 0.90 \, \text{(stat)} \pm 0.68 \, \text{(syst)} \pm 0.11(\mathcal{B})) \times 10^{-2}$$

Summary

- CMS is an active experiment in flavor spectroscopy
- We observe for the first time:
 - $> B_s^0 \rightarrow \psi(2S) K_s^0$ decay
 - $> B^0 \rightarrow \psi(2S) K_s^0 \pi^+ \pi^- decay$
 - $\succ \eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
 - $\succ \Lambda_b^0 \rightarrow J/\psi \Xi^- K^+ \text{ decay [NEW RESULT]}$

Thank you for attention!

BACKUP

Selection criteria for B⁰ and B⁰_s

pp collisions 13 TeV, L~104 fb⁻¹ (2017-2018)

Trigger: ψ(2S)→ μ⁺μ⁻, p_T(μ⁺μ⁻) > 18 GeV p_T(μ⁺) > 3 GeV, P_{vtx}(μμ) > 1%

$K^0_S\!\!\to\!\!\pi^+\pi^-$

 $P_{vtx}(\pi^{+}\pi^{-}) > 1\%$ m($\pi^{+}\pi^{-}$) ±20MeV around PDG value Distance significance $D_{xy}/\sigma > 5$ Angle between **p** and **D**: cos(a) > 0.99 p_T(K_S) > 1 GeV

$B{\rightarrow}\psi(2S)K^0_S$

 $P_{vtx}(\mu^+\mu^-K_s^0) > 5\%$ Distance significance $D_{xy}/\sigma > 5$ Angle between **p** and **D**: cos(β) > 0.99

$B \rightarrow \psi(2S) K_S^0 \pi^+ \pi^-$

 $p_T(\pi^{\pm}) > 0.9 \text{ GeV}$ $P_{vtx}(\mu^+\mu^-K_S^0\pi^+\pi^-) > 5\%$ Distance significance $D_{xy}/\sigma > 5$ Angle between **p** and **D**: $\cos(\beta) > 0.99$ Calculation of branching fraction ratio

$$R_{\rm s} \equiv \frac{\mathcal{B}({\rm B}^0_{\rm s} \rightarrow \psi(2{\rm S}){\rm K}^0_{\rm S})}{\mathcal{B}({\rm B}^0 \rightarrow \psi(2{\rm S}){\rm K}^0_{\rm S})} =$$

$$= \frac{f_{\rm d}}{f_{\rm s}} \frac{\epsilon({\rm B}^0 \to \psi(2{\rm S}){\rm K}^0_{\rm S})}{\epsilon({\rm B}^0_{\rm s} \to \psi(2{\rm S}){\rm K}^0_{\rm S})} \frac{N({\rm B}^0_{\rm s} \to \psi(2{\rm S}){\rm K}^0_{\rm S})}{N({\rm B}^0 \to \psi(2{\rm S}){\rm K}^0_{\rm S})}$$

Ratio of the signal yields in data

Ratio of total efficiencies from MC

Fragmentation fraction ratio

$$R_{\pi^+\pi^-} \equiv \frac{\mathcal{B}(B^0 \to \psi(2S)K_S^0\pi^+\pi^-)}{\mathcal{B}(B^0 \to \psi(2S)K_S^0)} =$$

$$= \frac{\epsilon(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}^{0}_{\mathrm{S}})}{\epsilon(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}^{0}_{\mathrm{S}}\pi^{+}\pi^{-})} \frac{N(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}^{0}_{\mathrm{S}}\pi^{+}\pi^{-})}{N(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}^{0}_{\mathrm{S}})}$$

Systematic uncertainties

Source	R_{s}	$R_{\pi^+\pi^-}$
Background model	2.5	0.8
Signal model	1.5	0.8
Shape of $B_s^0 \rightarrow \psi(2S) K_S^0 K^{\mp} \pi^{\pm}$ contribution		0.5
Finite size of simulation samples	1.3	1.1
Intermediate resonances		5.0
Tracking efficiency		4.2
Total	3.2	6.7

Optimization of selection criteria

[BPH-22-002]

Punzi formula is used for optimization, as it does not rely on **S** normalization

$$f = S/(\frac{463}{13} + 4\sqrt{B} + 5\sqrt{25 + 8\sqrt{B} + 4B})$$

S is number of signal events from MC (double-Gaussian function with common mean)

B is expected number of background events in the signal region

Extracted from data with $m_{PDG}(\Lambda_b^0) \pm 2\sigma_{eff}$ region excluded from the (bkg-only, exponential) fit.

Wrong-sign events are added to the sample to improve statistics. CS and WS distributions are found to be consistent.

The bkg integral in the signal region is taken as B

Systematic uncertainties			
Source		Uncertainty (%)	
Signal model		3.9	
Background model		6.7	
Non- $\psi(2S)$ contribution		2.5	
Finite size of MC		5.6	
Tracking efficiency		2.3	
Alternative selection crite	eria	33.5	
Total		35.0	
Uncertainty of efficiency ratio due to limited 4 MC statistics Signal model choice: • Student-T is baseline, alternatives are • Double-gaussian • Johnson PDF 5 Tracking efficiency 6) Back o) Pote) Alter it acc	 kground model choice: Exp is baseline, alternatives are 2nd degree polynomial Modified threshold pdf (x-x⁰)^a • exp Modified threshold pdf (x-x⁰)^a • Pol₁ ntial non-psi(2S) contribution mative selection criteria: counts the correlation of the statistical uncertainties 	

1)

2)

3)