Relativistic partial wave analysis of inclusive meson production $A+B \Longrightarrow V+X \Longrightarrow 1+2+X$ and determination of the spin quantization axis via the cross sections

$$
A+B \Longrightarrow V+X
$$

Machavariani Alexander ${ }^{a, b}$

${ }^{a}$ HEPI TSU, Tbilisi
${ }^{b}$ VBLHEP JINR, Dubna
\& What is Relativistic partial wave analysis?
Spin operator \widehat{S} is defined in rest frame of the system of the particles, where the total momentum $\mathbf{P}=0$

$$
\widehat{S}^{*}=\left(0, \widehat{\mathbf{S}}^{*}\right)
$$

Wigner rotation: from the one-particle rest frame with $\mathbf{p}=0, S^{*} \equiv$ $\left(0, \widehat{\mathbf{S}}^{*}\right)$ an arbitrary frame

$$
\left|\mathbf{p}, \mathbf{S}>=\widehat{R} \widehat{L} \widehat{R}^{-1}\right| \mathbf{p}=\mathbf{0}, \mathbf{S}^{*}>
$$

where

$$
p=\left(\sqrt{m^{2}+\mathbf{p}^{2}}, \mathbf{p}\right)=\widehat{R} \widehat{L} \widehat{R}^{-1}(m, 0) ; \quad \widehat{S}=\left(\widehat{S}_{o}, \mathbf{S}\right)=\widehat{R} \widehat{L} \widehat{R}^{-1}\left(0, \mathbf{S}^{*}\right)
$$

where \widehat{R} and \widehat{L} are 3D rotation and Lorentz transformation operators into an arbitrary frame, where $\mathbf{p} \neq 0$ and spin is directed along spin quantization axis.
\& Let's consider inclusive production of the vector meson resonance $J+1$

$$
A+B \Longrightarrow V+X \Longrightarrow 1+2+X
$$

$A, B=\gamma, h$ (hadrons), \bar{h}, d, heavy ions, \ldots

$$
V=\rho, \phi, \ldots
$$

$$
1+2=\text { lepton pairs, hadron pairs, } \ldots
$$

Ros Resonance decay amplitudes $\gamma^{*} \leftarrow V$. Therefore the following approximation is often used for $\mathcal{A}_{1+2 \leftarrow V}^{M}$

$$
\mathcal{A}_{e^{+}+e^{-} \leftarrow V}^{M}=g_{\bar{\ell} \leftarrow V} \xi_{\mu}^{*}\left(\mathbf{P}_{V}, M\right) \bar{u}\left(\mathbf{p}_{\ell}\right) \gamma_{\mu} v\left(\mathbf{p}_{\bar{\ell}}\right)
$$

$\xi^{\mu *}\left(\mathbf{P}_{V}, M\right)$ is the polarization vector of the spin 1 particle and coupling constant $g_{V} \equiv g_{\bar{\ell} \leftarrow V}$ is constant defined within vector meson dominance model.

$$
\mathcal{A}_{h \bar{h}-\leftarrow V}^{M}=g_{h \bar{h}-V} \xi_{\mu}^{*}\left(\mathbf{P}_{V}, M\right)\left(p_{h}+p_{\bar{h}}\right)_{\mu}
$$

where $g_{h \bar{h}-V} \equiv g_{h \bar{h}-V}\left(\left(p_{h}+p_{\bar{h}}\right)^{2}\right)$. is form-factor of $h \bar{h}-V$-system.
\& Cross-sections

Helicity basis simplifies construction of cross sections because helicity of any particle Lorentz invariant and Wigner transformations are exactly taken into account
Reactions $A+B \Longrightarrow V+X \Longrightarrow 1+2+X$ are described by one particle (resonance) exchange diagram, therefore

$$
\frac{d \sigma_{1+2+X \leftarrow A+B}}{d \Omega_{1+2+X \leftarrow A+B}}=
$$

$$
=\sum_{M M^{\prime}} \frac{d \widetilde{\sigma}_{1+2 \leftarrow V}^{M M^{\prime}}}{d \Omega_{1+2 \leftarrow V}} \frac{1}{\left(m_{V}-\sqrt{s_{12}}\right)^{2}+\Gamma_{V}^{2} / 4} \frac{d \sigma_{V+X \leftarrow A+B}^{M M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}}
$$

where M, M^{\prime} are magnetic quantum number of V-meson resonance

$$
\begin{gathered}
\frac{d \sigma_{V+X \leftarrow A+B}^{M M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}} \sim \prod_{i}^{X} \mathcal{A}_{V+X \leftarrow A+B}^{M}\left(\mathcal{A}_{V+X \leftarrow A+B}^{*}\right)^{M^{\prime}}(2 \pi)^{3} \frac{d \mathbf{P}_{12}}{(2 \pi)^{3}} \prod_{i=1}^{X} d \widetilde{\mathbf{p}}_{i} \\
\quad(2 \pi)^{4} \delta^{3}\left(\mathbf{P}_{A}+\mathbf{P}_{B}-\mathbf{P}_{12}-\mathbf{P}_{X}\right) \delta\left(P_{A}^{o}+P_{B}^{o}-P_{12}^{o}-P_{X}^{o}\right)
\end{gathered}
$$

where $\mathbf{P}_{12}=\mathbf{p}_{1}+\mathbf{p}_{2}$ and $P_{12}^{o}=p_{1}^{o}+p_{2}^{o}$,

$$
\frac{d \widetilde{\sigma}_{1+2 \leftarrow V}^{M M^{\prime}}}{d \Omega_{1+2 \leftarrow V}}=\mathcal{A}_{1+2 \leftarrow V}^{M}\left(\mathcal{A}_{1+2 \leftarrow V}^{*}\right)^{M^{\prime}} d \widetilde{\mathbf{p}_{1}} d \widetilde{\mathbf{p}_{\mathbf{2}}} \delta^{3}\left(\mathbf{p}_{1}^{*}+\mathbf{p}_{2}^{*}\right)
$$

Anisotropy (alignment) of V-meson resonance decay using the V-meson spin density matrix

$$
\rho_{A+B}^{M M^{\prime}} \Longrightarrow V+X=\frac{d \sigma_{A+B \rightarrow V+X}^{M M^{\prime}} / d \Omega_{A+B}^{*} \Longrightarrow V+X}{\int d \Omega_{V+X \leftarrow A+B} \sum_{M} d \sigma_{A+B \rightarrow V+X}^{M M} / d \Omega_{A+B \rightarrow V+X}^{*}} ;
$$

Experiments in 2022-2023 Years: In CERN collaborations H1, H1 SV, ZEUS, NMC, E665, HERMES, CompaSS, DELPHI (CERN). STAR RHIC. $\sqrt{s}=11.5,19.6,27,39,62.4,200 \mathrm{GeV}$ in Z^{o} decay Investigations in CERN was started in 1960-1970 Years.
\& Alternate partial wave decomposition of cross sections within L, S, J quantum numbers and without Wigner transformation

Dirac bispinor of one-particle state is solution of Lorentz invariant Dirac equation

$$
\begin{gathered}
u\left(\mathbf{p}, \mathbf{s}_{Z}\right)=\frac{p^{\mu} \gamma_{\mu}+m}{\sqrt{2 m\left(m+E_{\mathbf{p}}\right)}} u\left(\mathbf{p}=0, \mathbf{s}_{Z}\right) \\
u\left(\mathbf{p}=0, \mathbf{s}_{Z}\right)=\binom{\chi\left(\mathbf{s}_{Z}\right)}{0}
\end{gathered}
$$

where $E_{\mathbf{p}} \equiv p_{O}=\sqrt{\mathbf{p}^{2}+m^{2}}$. These functions are automatically defined in an arbitrary coordinate system and they do not need a Wigner transformation from one frame of reference to another.

Therefore one can use Lorentz invariant vertex functions

$$
\begin{aligned}
& \mathcal{A}_{1+2 \leftarrow V}^{M}=\bar{v}\left(\mathbf{p}_{2}, s_{2 Z}\right) \xi^{\mu}(0, M)\left\{G_{V}\left(\mathbf{p}_{12}^{*}, P_{12}^{* o} ; \mathbf{S}_{V}^{*}\right) \gamma_{\mu}\right. \\
& \left.\quad+G_{T}\left(\mathbf{p}_{12}^{*}, P_{12}^{* o} ; \mathbf{S}_{V}^{*}\right) \frac{i \sigma_{\mu \nu}\left(p_{1}+p_{2}\right)^{\nu}}{\mathbf{m}_{1}+\mathrm{m}_{2}}\right\} u\left(\mathbf{p}_{1}, s_{1 Z}\right)
\end{aligned}
$$

Tensor spherical harmonics

$$
\mathcal{Y}_{J M}^{L S}\left(\widehat{\mathbf{p}}_{12}^{*}\right)=\sum_{M_{L}}<L M_{L} S M_{S} \mid J M>Y_{L M_{L}}\left(\widehat{\mathbf{p}}_{12}^{*}\right) \chi_{S M_{S}}\left(s_{1 Z}^{s_{2 Z}}\right)
$$

Expansion over $\mathcal{Y}_{J M}^{L S}\left(\widehat{\mathbf{p}}_{12}^{*}\right)$

$$
\begin{gathered}
<\left(\mathbf{p}_{12}^{*}, S M_{S} \mid \mathcal{A}_{1+2 \leftarrow V}>=\sum_{J, L} \mathcal{Y}_{J M}^{L S}\left(\mathbf{p}_{12}^{*} ; M_{S}\right) \mathrm{F}_{J}^{S L}\left(\sqrt{s_{12}}\right)\right. \\
\mathrm{F}_{J}^{S L}\left(\sqrt{s_{12}}\right)=\int d \widehat{\mathbf{p}}_{12}^{*}\left[\mathcal{Y}_{J M}^{L S}\left(\mathbf{p}_{12}^{*} ; M_{S}\right)\right]^{+} \mathcal{A}_{1+2 \leftarrow V}\left(\mathbf{p}_{12}^{*}, S M_{S}\right) \\
<\left(\mathbf{p}_{12}^{*}, S M_{S} \mid \mathcal{A}_{1+2 \leftarrow V}>=\sum_{J, L} \mathcal{Y}_{J M}^{L S}\left(\mathbf{p}_{12}^{*} ; M_{S}\right) \mathrm{F}_{J}^{S L}\left(\sqrt{s_{12}}\right)\right.
\end{gathered}
$$

$$
\begin{gathered}
\chi_{S M_{S}}\left(s_{1 Z} s_{2 Z}\right)= \\
\left.<\frac{1}{2} s_{1 Z} \frac{1}{2} s_{1 Z} \right\rvert\, S M_{S}>v^{+}\left(\mathbf{p}_{2}=0, s_{2 Z}\right) u\left(\mathbf{p}_{1}=0, s_{1 Z}\right)
\end{gathered}
$$

Existing formula for cross section with Wigner rotations and Jacob-Wick decompositions:

$$
\begin{gathered}
\frac{d \sigma_{1+2+X \leftarrow A+B}}{d \Omega_{1+2+X}^{*}} \sim \frac{\left(g_{1+2 \leftarrow V}\right)^{2}}{\left(M_{V}^{2}-s_{12}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \\
{\left[\sum_{M, M^{\prime}} D^{* 1}{ }_{M \lambda_{1}-\lambda_{2}}\left(\phi^{*}, \theta^{*},-\phi^{*}\right) \frac{d \sigma_{V+X \leftarrow A+B}^{M, M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}^{*}} D_{M^{\prime} \lambda_{1}-\lambda_{2}}^{1}\left(\phi^{*}, \theta^{*},-\phi^{*}\right)\right]}
\end{gathered}
$$

Suggesting expression for vector mesons $J=1, L=0,1,2, S=0,1$.

$$
\begin{aligned}
& \frac{d \sigma_{1+2+X \leftarrow A+B}}{d \Omega_{1+2+X \leftarrow A+B}^{*}} \sim \sum_{M M^{\prime}}\left(\sum_{L S}\left[\mathcal{Y}_{J M}^{L S}\left(\mathbf{p}_{12}^{*}\right) \mathrm{F}_{J}^{S L}\left(\sqrt{s_{12}}\right)\right]^{+}\right. \\
& \left.\frac{d \sigma_{V+X \leftarrow A+B}^{M, M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}^{*}} \frac{\sum_{L^{\prime} S^{\prime}}\left[\mathcal{Y}_{J M^{\prime}}^{L^{\prime} S^{\prime}}\left(\mathbf{p}_{12}^{*}\right) \mathrm{F}_{J}^{S^{\prime} L^{\prime}}\left(\sqrt{s_{12}}\right)\right]}{\left(M_{V}^{2}-s_{12}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}}\right),
\end{aligned}
$$

where spin-orbital interaction, coupling of S and D partial waves - noncentrality of interaction of particles 1 and 2 are exactly taken into account. Analogue with nonrelativistic formulas for Hydrogen-type atom.
\& Determination of the direction of the spin \mathbf{S}_{V} of the V-meson resonance from the cross sections $V+X \leftarrow A+B$

Exists a number of theoretical indication about importance of choice of spin quantization axis in particle physic. But experimentally this axis was not yet fixed.

$$
\begin{gathered}
{\left[\frac{d \sigma_{V+X \leftarrow A+B}^{M M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}^{*}}\right]} \\
=<M\left|\mathcal{M}_{V+X \leftarrow A+B}\left(s, t_{A}, t_{B},\left(\mathbf{P}_{A}^{*} \mathbf{S}_{V}^{*}\right),\left(\mathbf{P}_{B}^{*} \mathbf{S}_{V}^{*}\right),\left(\mathbf{P}_{A}^{*} \times \mathbf{P}_{B}^{*} \mathbf{S}_{V}^{*}\right)\right)\right| M^{\prime}>
\end{gathered}
$$

$$
\mathcal{M}_{V+X \leftarrow A+B} \text { is invariant under Lorentz and } 3 D \text { rotations. using }
$$

$$
\left.\left(\mathbf{n S}_{V}\right)^{2 k}=\left(\mathbf{n} \mathbf{S}_{V}\right)^{2}=\frac{2}{3} \mathbf{E}+\sum_{i, j=1}^{3} \mathbf{n}_{i} \mathbf{n}_{j} Q_{i j} ; \quad(\mathbf{n S})_{V}\right)^{2 k+1}=\left(\mathbf{n} \mathbf{S}_{V}\right) ; \quad(i, j=
$$

$Q_{i j}$ operator of quadruple momentum

$$
\begin{aligned}
& {\left[\frac{d \sigma_{V+X \leftarrow A+B}^{M M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}^{*}}\right]=\mathrm{a}_{1} \delta_{M, M^{\prime}}+\mathrm{a}_{2}<M\left|\left(\mathbf{e}_{\mathbf{X}} \mathbf{S}_{V}^{*}\right)^{2}\right| M^{\prime}>} \\
& \quad+\mathrm{a}_{3}<M\left|\left(\mathbf{e}_{\mathbf{y}} \mathbf{S}_{V}^{*}\right)^{2}\right| M^{\prime}>+\mathrm{a}_{4}<M\left|\left(\mathbf{e}_{\mathbf{z}} \mathbf{S}_{V}^{*}\right)^{2}\right| M^{\prime}>
\end{aligned}
$$

$\mathbf{e}_{\mathbf{X}}, \mathbf{e}_{\mathbf{Y}}, \mathbf{e}_{\mathbf{Z}}$ are unit vectors which are constructed from $\mathbf{P}_{\mathbf{A}}{ }^{*}$ and $\mathbf{P}_{\mathbf{B}}{ }^{*}$ FINALLY

$$
\begin{gathered}
\frac{d \sigma_{V+X \leftarrow A+B}^{M M^{\prime}}}{d \Omega_{V+X \leftarrow A+B}^{*}}=\mathrm{b}_{1} \delta_{M, M^{\prime}}+\cos ^{2}(\Theta) \mathrm{b}_{2}+\sin ^{2}(\Theta) \cos ^{2}(\Phi) \mathrm{b}_{3}+ \\
+\sin ^{2}(\Theta) \sin ^{2}(\Phi) \mathrm{b}_{4}+\ldots
\end{gathered}
$$

where

$$
\mathbf{S}_{V}^{*}=\left|\mathbf{S}_{V}^{*}\right|(\cos (\Phi) \sin (\Theta), \sin (\Phi) \sin (\Theta), \cos (\Theta))
$$

Combining $d \sigma_{V+X \leftarrow A+B}^{M M^{\prime}} / d \Omega_{V+X \leftarrow A+B}^{*}$ with different $M, M^{\prime}=X, Y, Y$ one can extract Θ and Φ.

CONCLUSION:

\& It is suggested the recipe of determination of direction of the V meson spin quantization axis via the cross section of reaction $1+2+X \leftarrow$ $V+X \leftarrow A+B$.
This is first recipe of determination of location of spin quantization axis.
\&\% It is suggested procedure of partial wave decomposition of the cross sections of reactions $1+2+X \leftarrow V+X \leftarrow A+B$ which allows to take into account exactly orbital moment and spin of V-meson resonance from the experimental data.
In high energy physic dependence on $L S$ was ignored. Only during the last year are appearing first experimental paper about importance of $L S$

