Neural Network techniques for a separation of pair and single top quark contributions to tWb final state

P. Volkov<sup>1</sup>, E. Boos<sup>1</sup>, S. Bunichev<sup>1</sup>, L. Dudko<sup>1</sup>, M. Perfilov<sup>1</sup>, G. Vorotnikov<sup>1</sup>.

<sup>1</sup>SINP MSU, Moscow

# Outline

- p,p -> t,W,b modeling task
- Machine learning base
- Input variables used are used in NN
- NN separation power
- Results and Plans

## tWb simulation

tWb process at NLO level can be simulated with Diagram removal scheme [arXiv:1607.05862 [hep-ph]. But with gauge invariance violation and loss of the interference between tT and tWb diagrams.. For full tT+tWb we have diagrams in total: yellow tT - diagrams other tW-B, TW+b diagrams

The idea is to extract tWb process from full scheme using neural networks.



# tWb modeling

## 4 samples are generated in CompHEP package. In LHE format

| Process | cross section | events     | name                      |
|---------|---------------|------------|---------------------------|
| tW-B    | 1.413         | ~1 000 000 | GG_NeeuDbB_tW-B.lhe       |
| TW+b    | 1.413         | ~1 000 000 | GG_NeeuDbB_TW+b.lhe       |
| tT      | 15.200        | ~1 000 000 | GG_NeeuDbB_tT.lhe         |
| tT_tWb  | 16.020        | ~2 000 000 | GG_NeeuDbB_tT_tWb_all.lhe |

| Model:               | SM, unitary                               | y gauge<br>Nm m i4 i4  |         |        |               |
|----------------------|-------------------------------------------|------------------------|---------|--------|---------------|
| diagrams<br>diagrams | Feynman diag<br>in 4 subr<br>are deleted. | grams<br>processes are | constru | ucted. | View diagrams |
|                      |                                           |                        |         |        |               |
| NN                   | Subproce                                  | ess                    | Del     | Rest   |               |

# Machine learning base



#### Training set and input variables

- Training set included top pair production process as background and single top and antitop process in DR scheme as signal.
- 200 k events are used in training and 200 k are used for validation.
- Signal and background are normalized one to one.
- Specific input features are used [Int.J.Mod.Phys.A 35 (2020) 21,2050119, hep-ph:2002.09350]. transverse momentum and pseudo-rapidity



# low level input variables

• Specific input features are used [Int.J.Mod.Phys.A 35 (2020) 21,2050119, hep-ph:2002.09350]. Scalar products.



To improve DNN separation power we used additional input variables, named expert or "high level". For example.

- Top1(Lep+Nu+B)/ Top2(W(u+D)+b) recovered mass.
- angular variables.
- W bosons pt

• etc





### NN training

Dendrogram and correlation matrix for tT vs tWb

Tensorflow package was used for training. Few network configurations were checked. as a result 3 layers of 100 neurons were selected. with using dropout and I2 regularization.

Also dendrogram and correlations matrix were used to create feathers sets.







## Results



Neural network can be used to separate pair top quark and single top quark in full sheme. cos(Lep, u)\_top1RF are shown. The histograms take into account cross sections. In region NN\_dicriminant < 0.9 the fraction of the single top quark is almost zero.



## Results

Neural network can be used to separate pair top quark and single top quark in full sheme. Mtop1(Lep + Nu+ b) are shown. The histograms take into account cross sections. In region NN\_dicriminant > 0.9 the fraction of the paired top quark is smaller relative to the single top quark.



## **Conclusion and Plans**

- Consulison
  - tT, tWb(DT1), tT\_tWb simulated.
  - NN input variables and architecture created.
  - Separated NN trained.
  - NN are implemented to tT\_tWb samples, and good separation power shown.
- Plans
  - Apply detector response to simulation with delphes.
  - Train DNN on simulation after delphes.

The work was supported by the Grand RNF 22-12-00152