On the role of the z^5 -term in the metric strain coefficient for the holographic description of magnetic catalysis in QGP

K.A. Rannu

Peoples Friendship University of Russia (RUDN) Steklov Mathematical Institute (MI RAS)

21st Lomonosov Conference on Elementary Particle Physics

MSU

28.08.2023

うして ふゆう ふほう ふほう ふしつ

References

Irina Ya. Aref'eva, Alexey Ermakov, Ali Hajilou, K.R., Pavel Slepov Steklov Mathematical Institute of RAS

- Aref'eva, Ermakov, K.R., Slepov "Holographic model for light quarks in anisotropic hot dense QGP with external magnetic field" Eur.Phys.J.C 83 79 (2023) arXiv:2203.12539 [hep-th]
- Aref'eva, Hajilou, K.R., Slepov "Magnetic Catalysis in Holographic Model with two Types of Anisotropy for Heavy Quarks" (2023) arXiv:2305.06345 [hep-th]
- K.R. "Holographic Model with two Types of Anisotropy for Heavy Quarks: Magnetic Catalysis via z⁵-term" in progress

Supported by the Ministry of Science and Higher Education of the Russian Federation Agreement No.075-15-2019-1614, the scientific project No. FSSF-2023-0003 and the "BASIS" Science Foundation grants No. 22-1-3-18-1 and No. 21-1-5-127-1

Magnetic Catalysis

$$\mathfrak{b}(z) = e^{-cz^2/2 - 2(p - c_B q_3)z^4}$$

arXiv:2305.06345 [hep-th]

ヘロト ヘロト ヘヨト ヘヨト

æ

Twice Anisotropic Background

$$\mathcal{L} = R - \frac{f_0(\phi)}{4} F_0^2 - \frac{f_1(\phi)}{4} F_1^2 - \frac{f_3(\phi)}{4} F_3^2 - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

$$A_{\mu}^0 = A_t(z) \delta_{\mu}^0 \qquad F_1 = q_1 \ dx^2 \wedge dx^3 \qquad F_3 = q_3 \ dx^1 \wedge dx^2$$

$$A_t(0) = \mu \qquad g(0) = 1 \qquad Dudal \ et \ al., \ (2019)$$

$$A_t(z_h) = 0 \qquad g(z_h) = 0 \qquad \phi(z_0) = 0 \rightarrow \sigma_{\text{string}}$$

$$ds^2 = \frac{L^2}{z^2} \mathfrak{b}(z) \left[-g(z) \ dt^2 + dx_1^2 + \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dx_2^2 + e^{c_B z^2} \left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} dx_3^2 + \frac{dz^2}{g(z)} \right]$$

$$I.A., \ A.G. \ (2014), \ Giataganas \ (2013) \qquad G\"{u}rsoy, \ J\"{u}rvinen \ et \ al., \ (2019)$$

$$\mathfrak{b}(z) = e^{2\mathcal{A}(z)} \rightarrow \text{ quarks mass} \qquad \text{``Bottom-up approach''}$$

 $\mathcal{A}(z) = -cz^2/4 \rightarrow \text{heavy quarks background (b, t)} \qquad \begin{array}{l} \text{Andreev, Zakharov (2006)} \\ \mathcal{A}(z) = -a\ln(bz^2+1) \rightarrow \text{light quarks background (d, u)} \qquad \begin{array}{l} \text{Li, Yang, Yuan (2020)} \\ \text{Li, Yang, Yuan (2020)} \end{array}$

"Heavy" Quarks Warp Factor

 \downarrow

$$\mathcal{A}(z) = -cz^2/4$$

$$\mathcal{A}(z) = -cz^2/4 - (p - c_B q_3)z^4$$

Aref'eva, Hajilou, K.R., Slepov arXiv:2305.06345 [hep-th]

$$\mathcal{A}(z) = -az^2 - dB^2 z^5$$

Bohra, Dudal, Hajilou, Mahapatra PRD **103** 086021 (2021) arXiv:2010.04578 [hep-th]

$$f_0 = e^{-(c+q_3^2)z^2} \, \frac{z^{-2+\frac{2}{\nu}}}{\sqrt{\mathfrak{b}}}$$

$$a = 0.15 \text{ GeV}^2, \ c = 1.16 \text{ GeV}^2$$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

d > 0.05

"Heavy" Quarks Warp Factor

 \downarrow

$$\mathcal{A}(z) = -cz^2/4$$

$$\mathcal{A}(z) = -cz^2/4 - (p - c_B q_3)z^4$$

Aref'eva, Hajilou, K.R., Slepov arXiv:2305.06345 [hep-th]

$$\mathcal{A}(z) = -az^2 - dB^2 z^5$$

Bohra, Dudal, Hajilou, Mahapatra PRD **103** 086021 (2021) arXiv:2010.04578 [hep-th]

$$f_0 = e^{-(c+q_3^2)z^2} \frac{z^{-2+\frac{1}{\nu}}}{\sqrt{\mathfrak{b}}}$$

 $\alpha \perp 2$

 $a = 0.15 \text{ GeV}^2, \ c = 1.16 \text{ GeV}^2$

Magnetic Catalysis: $T(z_h, q_3)$ for fixed $c_B < 0, \forall d$

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一のへで

Phase Diagram $T(\mu), c_B = -0.01$

QCD Phase Diagram: Lattice

Phase diagram on quark mass

Columbia plot Brown et al., PRL (1990)

Philipsen, Pinke, PRD (2016)

"Light" and "Heavy" Quarks from Columbia Plot

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

"Light" Quarks: Inverse Magnetic Catalysis

$$\mathfrak{b}(z) = e^{-a\ln(bz^2+1)}$$

Eur.Phys.J.C 83 79 (2023)

・ロト ・雪ト ・ヨト ・ヨト

3

Conclusions

Terms z^4 and z^5 in the warp-factor give a wide opportunity to fit Lattice results and experimental data for large chemical potential

- The coefficient value in z^5 -term doesn't seems to determine MC/IMC behavior (nod>0.05 limit found)
- Stable solution with MC effect needs fixed $c_B < 0$
- \bullet Increasing d value rises PT temperature
- Increasing d value has weak influence on μ_{max} : $T(\mu_{max}) = 0$
- Primary anisotropy lowers PT temperature and stabilises μ_{max} value

ション ふゆ マ キャット マックシン

Conclusions

Terms z^4 and z^5 in the warp-factor give a wide opportunity to fit Lattice results and experimental data for large chemical potential

- The coefficient value in z^5 -term doesn't seems to determine MC/IMC behavior (nod>0.05 limit found)
- Stable solution with MC effect needs fixed $c_B < 0$
- \bullet Increasing d value rises PT temperature
- Increasing d value has weak influence on μ_{max} : $T(\mu_{max}) = 0$
- Primary anisotropy lowers PT temperature and stabilises μ_{max} value

What to do next

- Temporal Wilson loops
- Cornell potential and string tension
- Drag forces and energy losses
- Other characteristics (susceptibility, transport coefficients, eta/s, direct-photon spectra, jet quenching, thermalization time, etc)

Thank you for your attention

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BACKUP. Relations between 5-dim backgrounds and 4-dim models

- Relations between parameters of the 5-dim background (black hole) and thermodynamical parameters are the following:
 - $T_{BH} = T_{QCD}$, where T_{BH} is the temperature of the 5-dim black hole;
 - $A_0(z) = \mu_B \rho_B z^2 + \mathcal{O}(z)$, where $A_0(z)$ is the 0-component of the electromagnetic field $A_{\mu}(z)$, μ_B is the baryonic chemical potential, ρ_B is the density and z is the 5-dimensional coordinate;
 - $S_{BH} = s$, where S_{BH} is the entropy of the black hole, which as usual is defined by the square of the black hole horizon, s is the thermodynamical entropy;

• $F_{BH} = -p$, where F_{BH} is the free energy of the black hole, p is the thermodynamical pressure.