On the role of the z^{5}-term in the metric strain coefficient for the holographic description of magnetic catalysis in QGP

K.A. Rannu

Peoples Friendship University of Russia (RUDN) Steklov Mathematical Institute (MI RAS)

21st Lomonosov Conference on Elementary Particle Physics
MSU
28.08.2023

References

Irina Ya. Aref'eva, Alexey Ermakov, Ali Hajilou, K.R., Pavel Slepov Steklov Mathematical Institute of RAS

- Aref'eva, Ermakov, K.R., Slepov "Holographic model for light quarks in anisotropic hot dense QGP with external magnetic field" Eur.Phys.J.C 8379 (2023) arXiv:2203.12539 [hep-th]
- Aref'eva, Hajilou, K.R., Slepov "Magnetic Catalysis in Holographic Model with two Types of Anisotropy for Heavy Quarks" (2023) arXiv:2305.06345 [hep-th]
- K.R. "Holographic Model with two Types of Anisotropy for Heavy Quarks: Magnetic Catalysis via z^{5}-term" in progress

Supported by the Ministry of Science and Higher Education of the Russian Federation Agreement No.075-15-2019-1614, the scientific project No. FSSF-2023-0003 and the
"BASIS" Science Foundation grants No. 22-1-3-18-1 and No. 21-1-5-127-1

Magnetic Catalysis

$$
\mathfrak{b}(z)=e^{-c z^{2} / 2-2\left(p-c_{B} q_{3}\right) z^{4}}
$$

Twice Anisotropic Background

$$
\begin{array}{cc}
\mathcal{L}=R-\frac{f_{0}(\phi)}{4} F_{0}^{2}-\frac{f_{1}(\phi)}{4} F_{1}^{2}-\frac{f_{3}(\phi)}{4} F_{3}^{2}-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi) \\
A_{\mu}^{0}=A_{t}(z) \delta_{\mu}^{0} & F_{1}=q_{1} d x^{2} \wedge d x^{3} \\
A_{t}(0)=\mu & F_{3}=q_{3} d x^{1} \wedge d x^{2} \\
A_{t}\left(z_{h}\right)=0 & \text { Dudal et al., (2019) } \\
d s^{2}=\frac{L^{2}}{z^{2}} \mathfrak{b}(z)\left[-g(z) d t^{2}+d x_{1}^{2}+\left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} d x_{2}^{2}+e^{c_{B} z^{2}}\left(\frac{z}{L}\right)^{2-\frac{2}{\nu}} d x_{3}^{2}+\frac{d z^{2}}{g(z)}\right]
\end{array}
$$

I.A., A.G. (2014), Giataganas (2013) Gürsoy, Järvinen et al., (2019)

$$
\mathfrak{b}(z)=e^{2 \mathcal{A}(z)} \rightarrow \text { quarks mass }
$$

"Bottom-up approach"
$\mathcal{A}(z)=-c z^{2} / 4 \rightarrow$ heavy quarks background (b, t) Andreev, Zakharov (2006) $\mathcal{A}(z)=-a \ln \left(b z^{2}+1\right) \rightarrow$ light quarks background (d, u) Li, Yang, Yuan (2020)

"Heavy" Quarks Warp Factor

$$
\begin{aligned}
& \text { Aref'eva, K.R., Slepov } \\
& \mathcal{A}(z)=-c z^{2} / 4 \\
& \text { JHEP } 07161 \text { (2021) } \\
& \text { arXiv:2011.07023 [hep-th] } \\
& \Downarrow \\
& \mathcal{A}(z)=-c z^{2} / 4-\left(p-c_{B} q_{3}\right) z^{4} \\
& \text { Aref'eva, Hajilou, K.R., Slepov } \\
& \text { arXiv:2305.06345 [hep-th] } \\
& \text { Bohra, Dudal, Hajilou, Mahapatra } \\
& \text { arXiv:2010.04578 [hep-th] } \\
& f_{0}=e^{-\left(c+q_{3}^{2}\right) z^{2}} \frac{z^{-2+\frac{2}{\nu}}}{\sqrt{\mathfrak{b}}} \\
& a=0.15 \mathrm{GeV}^{2}, c=1.16 \mathrm{GeV}^{2} \\
& d>0.05
\end{aligned}
$$

"Heavy" Quarks Warp Factor

$$
\begin{aligned}
& \text { Aref'eva, K.R., Slepov } \\
& \mathcal{A}(z)=-c z^{2} / 4 \quad \text { JHEP } 07161 \text { (2021) } \\
& \text { arXiv:2011.07023 [hep-th] } \\
& \downarrow \\
& \mathcal{A}(z)=-c z^{2} / 4-\left(p-c_{B} q_{3}\right) z^{4} \\
& \text { Aref'eva, Hajilou, K.R., Slepov } \\
& \text { arXiv:2305.06345 [hep-th] } \\
& \text { Bohra, Dudal, Hajilou, Mahapatra } \\
& \text { PRD } 103086021 \text { (2021) } \\
& \text { arXiv:2010.04578 [hep-th] } \\
& \mathcal{A}(z)=-a z^{2}-d B^{2} z^{5} \\
& \begin{array}{c}
\text { PRD } 103 \text { 086021 (2021) } \\
\text { arXiv:2010.04578 (hep-th] }
\end{array} \\
& f_{0}=e^{-\left(c+q_{3}^{2}\right) z^{2}} \frac{z^{-2+\frac{2}{\nu}}}{\sqrt{\mathfrak{b}}} \\
& a=0.15 \mathrm{GeV}^{2}, c=1.16 \mathrm{GeV}^{2}
\end{aligned}
$$

Magnetic Catalysis: $T\left(z_{h}, q_{3}\right)$ for fixed $c_{B}<0, \forall d$

Phase Diagram $T(\mu), c_{B}=-0.01$

QCD Phase Diagram: Lattice

Phase diagram on quark mass

Columbia plot
Brown et al., PRL (1990)

Main problem with $\mu \neq 0$ Imaginary chemical potential method

Philipsen, Pinke, PRD (2016)

"Light" and "Heavy" Quarks from Columbia Plot

Light quarks

"Light" Quarks: Inverse Magnetic Catalysis

$$
\mathfrak{b}(z)=e^{-a \ln \left(b z^{2}+1\right)}
$$

Eur.Phys.J.C 8379 (2023)

Conclusions

Terms z^{4} and z^{5} in the warp-factor give a wide opportunity to fit Lattice results and experimental data for large chemical potential

- The coefficient value in z^{5}-term doesn't seems to determine MC/IMC behavior (no $d>0.05$ limit found)
- Stable solution with MC effect needs fixed $c_{B}<0$
- Increasing d value rises PT temperature
- Increasing d value has weak influence on $\mu_{\max }: T\left(\mu_{\max }\right)=0$
- Primary anisotropy lowers PT temperature and stabilises $\mu_{\max }$ value

Conclusions

Terms z^{4} and z^{5} in the warp-factor give a wide opportunity to fit Lattice results and experimental data for large chemical potential

- The coefficient value in z^{5}-term doesn't seems to determine MC/IMC behavior (no $d>0.05$ limit found)
- Stable solution with MC effect needs fixed $c_{B}<0$
- Increasing d value rises PT temperature
- Increasing d value has weak influence on $\mu_{\max }: T\left(\mu_{\max }\right)=0$
- Primary anisotropy lowers PT temperature and stabilises $\mu_{\max }$ value

What to do next

- Temporal Wilson loops
- Cornell potential and string tension
- Drag forces and energy losses
- Other characteristics (susceptibility, transport coefficients, eta/s, direct-photon spectra, jet quenching, thermalization time, etc)

Thank you

for your attention

BACKUP. Relations between 5-dim backgrounds and 4-dim models

- Relations between parameters of the 5-dim background (black hole) and thermodynamical parameters are the following:
- $T_{B H}=T_{Q C D}$, where $T_{B H}$ is the temperature of the 5-dim black hole;
- $A_{0}(z)=\mu_{B}-\rho_{B} z^{2}+\mathcal{O}(z)$, where $A_{0}(z)$ is the 0 -component of the electromagnetic field $A_{\mu}(z), \mu_{B}$ is the baryonic chemical potential, ρ_{B} is the density and z is the 5 -dimentional coordinate;
- $S_{B H}=s$, where $S_{B H}$ is the entropy of the black hole, which as usual is defined by the square of the black hole horizon, s is the thermodynamical entropy;
- $F_{B H}=-p$, where $F_{B H}$ is the free energy of the black hole, p is the thermodynamical pressure.

