Chern-Simons boundary layers in the Casimir effect

Valery N. Marachevsky

21st Lomonosov Conference on Elementary Particle Physics
Moscow State University, Moscow, 28 August 2023

In this talk

1. A novel gauge-invariant by construction method in the Casimir effect.
2. The Casimir-Polder potential of an anisotropic atom between two dielectric half spaces with Chern-Simons boundary layers.
3. The Casimir-Polder potential of an anisotropic atom between two Chern-Simons layers in vacuum expressed through special functions.
4. P-odd three-body vacuum effects.
5. Casimir energy of two Chern-Simons layers in vacuum.
6. Casimir energy of two dielectric half spaces with ChernSimons boundary layers.
7. Appearance of a minimum in the Casimir energy due to presence of Chern-Simons layers at the boundaries of dielectrics.

Chern-Simons Casimir effect

V. N. Markov and Yu. M. Pis'mak, Casimir effect for thin films in QED, J. Phys. A: Math. Gen. 39, 6525 (2006).
V. N. Marachevsky and Yu. M. Pis'mak, Casimir-Polder potential of a neutral atom in front of Chern-Simons plane layer, Phys.Rev.D 81, 065005 (2010).
V. N. Marachevsky, Casimir effect for Chern-Simons layers in the vacuum, Theor. Math. Phys. 190, 315 (2017).
V. N. Marachevsky, Chern-Simons layers on dielectrics and metals, Phys.Rev.B 99, 075420 (2019).
V. N. Marachevsky, Chern-Simons boundary layers in the Casimir effect, Mod.Phys.Lett.A 35, 2040015 (2020).
V. N. Marachevsky and A. A. Sidelnikov, Casimir-Polder interaction with Chern-Simons boundary layers, Phys.Rev.D 107, 105019 (2023).

Chern-Simons layer on a dielectric half space

Chern-Simons layer on a dielectric half space
The action with Chern-Simons layer at $z=0$ has the form:

$$
\begin{equation*}
S=\frac{a}{2} \int \varepsilon^{z \nu \rho \sigma} A_{\nu} F_{\rho \sigma} d t d x d y \tag{1}
\end{equation*}
$$

Equations of electromagnetic field in the presence of Chern-Simons action (1) can be written as follows:

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}+a \varepsilon^{z \nu \rho \sigma} F_{\rho \sigma} \delta(z)=0 \tag{2}
\end{equation*}
$$

Consider a flat Chern-Simons layer put at $z=0$ on a dielectric half space $z<0$ characterized by a frequency dependent dielectric permittivity $\varepsilon(\omega)$, the magnetic permeability $\mu=1$. Boundary conditions on the components of the electromagnetic field follow:

$$
\begin{align*}
\left.E_{z}\right|_{z=0^{+}}-\left.\varepsilon(\omega) E_{z}\right|_{z=0^{-}} & =-\left.2 a H_{z}\right|_{z=0}, \tag{3}\\
\left.H_{x}\right|_{z=0^{+}}-\left.H_{x}\right|_{z=0^{-}} & =\left.2 a E_{x}\right|_{z=0}, \tag{4}\\
\left.H_{y}\right|_{z=0^{+}}-\left.H_{y}\right|_{z=0^{-}} & =\left.2 a E_{y}\right|_{z=0} . \tag{5}
\end{align*}
$$

A special case: plane Chern-Simons layer in vacuum
TE or s-polarization (the factor $\exp \left(i \omega t+i k_{y} y\right)$ is omitted):

$$
\begin{align*}
& E_{x}=\exp \left(-i k_{z} z\right)+r_{s} \exp \left(i k_{z} z\right), z>0 \tag{6}\\
& E_{x}=t_{s} \exp \left(-i k_{z} z\right), z<0 \tag{7}\\
& H_{x}=r_{s \rightarrow p} \exp \left(i k_{z} z\right), z>0 \tag{8}\\
& H_{x}=t_{s \rightarrow p} \exp \left(-i k_{z} z\right), z<0 . \tag{9}
\end{align*}
$$

TM or p-polarization:

$$
\begin{align*}
H_{x} & =\exp \left(-i k_{z} z\right)+r_{p} \exp \left(i k_{z} z\right), z>0 \tag{10}\\
H_{x} & =t_{p} \exp \left(-i k_{z} z\right), z<0 \tag{11}\\
E_{x} & =r_{p \rightarrow s} \exp \left(i k_{z} z\right), z>0 \tag{12}\\
E_{X} & =t_{p \rightarrow s} \exp \left(-i k_{z} z\right), z<0 \tag{13}
\end{align*}
$$

A special case: plane Chern-Simons layer in vacuum
In vacuum the reflection coefficients for TE mode from a ChernSimons layer have the form:

$$
\begin{array}{ll}
r_{s}=-\frac{a^{2}}{1+a^{2}}, & t_{s}=\frac{1}{1+a^{2}}, \tag{14}\\
r_{s \rightarrow p}=\frac{a}{1+a^{2}}, & t_{s \rightarrow p}=-\frac{a}{1+a^{2}}
\end{array}
$$

for TM mode:

$$
\begin{array}{ll}
r_{p}=\frac{a^{2}}{1+a^{2}}, & t_{p}=\frac{1}{1+a^{2}}, \\
r_{p \rightarrow s}=\frac{a}{1+a^{2}}, & t_{p \rightarrow s}=\frac{a}{1+a^{2}} . \tag{15}
\end{array}
$$

[V.N.Marachevsky, Theor.Math.Phys., 2017]

The Casimir-Polder potential of an anisotropic atom between two Chern-Simons boundary layers

Anisotropic neutral atom between two dielectric half spaces with plane Chern-Simons boundary layers, z_{0} is a distance of the atom from the layer and the dielectric medium characterized by the index $2, d$ is a width of the vacuum slit.
[V.N.Marachevsky and A.A.Sidelnikov, Phys.Rev.D, 2023].

Consider a dipole source at the point $\mathbf{r}^{\prime}=\left(0,0, z_{0}\right)$ characterized by electric dipole moment $d^{\prime}(t)$ with components of the four-current density [V.N.Marachevsky and Yu.M.Pis'mak, Phys.Rev.D, 2010]

$$
\begin{align*}
\rho(t, \mathbf{r}) & =-d^{\prime}(t) \partial_{l} \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{16}\\
j^{\prime}(t, \mathbf{r}) & =\partial_{t} d^{\prime}(t) \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{17}
\end{align*}
$$

The Casimir-Polder potential is defined in terms of the scattered electric Green function $D_{i j}^{E, s c}\left(t_{1}-t_{2}, \mathbf{r}, \mathbf{r}^{\prime}\right)=D_{i j}^{E}\left(t_{1}-t_{2}, \mathbf{r}, \mathbf{r}^{\prime}\right)-$ $D_{i j}^{E, v a c}\left(t_{1}-t_{2}, \mathbf{r}, \mathbf{r}^{\prime}\right)$ from the source (16),(17) and the atomic polarizability $\alpha_{i j}\left(t_{1}-t_{2}\right)=i\left\langle T\left(\hat{d}_{i}\left(t_{1}\right), \hat{d}_{j}\left(t_{2}\right)\right)\right\rangle$ as follows:

$$
\begin{equation*}
U\left(z_{0}\right)=-\int_{0}^{\infty} \frac{d \omega}{2 \pi} \alpha^{i j}(i \omega) D_{i j}^{E, s c}\left(i \omega, \mathbf{r}^{\prime}, \mathbf{r}^{\prime}\right) \tag{18}
\end{equation*}
$$

From Weyl formula

$$
\begin{equation*}
\frac{e^{i \omega\left|\mathbf{r}^{\prime}-\mathbf{r}\right|}}{4 \pi\left|\mathbf{r}^{\prime}-\mathbf{r}\right|}=i \iint \frac{e^{i\left(k_{x}\left(x^{\prime}-x\right)+k_{y}\left(y^{\prime}-y\right)+\sqrt{\omega^{2}-k_{x}^{2}-k_{y}^{2}}\left(z^{\prime}-z\right)\right)}}{2 \sqrt{\omega^{2}-k_{x}^{2}-k_{y}^{2}}} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} \tag{19}
\end{equation*}
$$

valid for $z^{\prime}-z>0$, one can write electric and magnetic fields propagating downwards from the dipole source (16),(17) in the form [V.N.Marachevsky and A.A.Sidelnikov, Universe, 2021]

$$
\begin{align*}
& \mathbf{E}^{0}(\omega, \mathbf{r})=\int \widetilde{\mathbf{N}}\left(\omega, \mathbf{k}_{\|}\right) e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{-i k_{z}\left(z-z_{0}\right)} d^{2} \mathbf{k}_{\|} \tag{20}\\
& \mathbf{H}^{0}(\omega, \mathbf{r})=\frac{1}{\omega} \int\left[\widetilde{\mathbf{k}} \times \widetilde{\mathbf{N}}\left(\omega, \mathbf{k}_{\|}\right)\right] e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{-i k_{z}\left(z-z_{0}\right)} d^{2} \mathbf{k}_{\|} \tag{21}\\
& \widetilde{\mathbf{N}}\left(\omega, \mathbf{k}_{\|}\right)=\frac{i}{8 \pi^{2} k_{z}}\left(-(\mathbf{d} \cdot \widetilde{\mathbf{k}}) \widetilde{\mathbf{k}}+\omega^{2} \mathbf{d}\right) \tag{22}
\end{align*}
$$

where $\mathbf{k}_{\|}=\left(k_{x}, k_{y}\right), k_{z}=\sqrt{\omega^{2}-k_{\|}^{2}}, \widetilde{\mathbf{k}}=\left(\mathbf{k}_{\|},-k_{z}\right)$.

To solve a diffraction problem we write electric and magnetic fields for $z>0$ in the form

$$
\begin{align*}
\mathbf{E}^{1}(\omega, \mathbf{r}) & =\int \widetilde{\mathbf{N}}\left(\omega, \mathbf{k}_{\|}\right) e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{-i k_{z}\left(z-z_{0}\right)} d^{2} \mathbf{k}_{\|} \\
& +\int \mathbf{v}\left(\omega, \mathbf{k}_{\|}\right) e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{i k_{z} z} d^{2} \mathbf{k}_{\|} \tag{23}\\
\mathbf{H}^{\mathbf{1}}(\omega, \mathbf{r}) & =\frac{1}{\omega} \int\left[\widetilde{\mathbf{k}} \times \widetilde{\mathbf{N}}\left(\omega, \mathbf{k}_{\|}\right)\right] e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{-i k_{z}\left(z-z_{0}\right)} d^{2} \mathbf{k}_{\|} \\
& +\frac{1}{\omega} \int\left[\mathbf{k} \times \mathbf{v}\left(\omega, \mathbf{k}_{\|}\right)\right] e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{i k_{z} z} d^{2} \mathbf{k}_{\|} \tag{24}
\end{align*}
$$

and for $z<0$ in the form
$\mathbf{E}^{2}(\omega, \mathbf{r})=\int \mathbf{u}\left(\omega, \mathbf{k}_{\|}\right) e^{i \mathbf{k}_{\|} \cdot \boldsymbol{r}_{\|}} e^{-i K_{z} z} d^{2} \mathbf{k}_{\|}$,
$\mathbf{H}^{2}(\omega, \mathbf{r})=\frac{1}{\omega} \int\left(\left[\mathbf{k}_{\|} \times \mathbf{u}\left(\omega, \mathbf{k}_{\|}\right)\right]-K_{z}\left[\mathbf{n} \times \mathbf{u}\left(\omega, \mathbf{k}_{\|}\right)\right]\right) e^{i \mathbf{k}_{\|} \cdot \mathbf{r}_{\|}} e^{-i K_{z} z} d^{2} \mathbf{k}_{\|}$
with $K_{z}=\sqrt{\varepsilon(\omega) \omega^{2}-k_{x}^{2}-k_{y}^{2}}$ and $\mathbf{n}=(0,0,1)$.

Unknown vector functions $\mathbf{v}\left(\omega, \mathbf{k}_{\|}\right)$and $\mathbf{u}\left(\omega, \mathbf{k}_{\|}\right)$can be found from the system of boundary conditions imposed on electric and magnetic fields:

$$
\begin{gather*}
\operatorname{div}\left(\mathbf{E}^{1}-\mathbf{E}^{0}\right)=0, \tag{27}\\
\operatorname{div} \mathbf{E}^{2}=0, \tag{28}\\
\left.E_{x}^{1}\right|_{z=0}=\left.E_{x}^{2}\right|_{z=0}, \tag{29}\\
\left.E_{y}^{1}\right|_{z=0}=\left.E_{y}^{2}\right|_{z=0}, \tag{30}\\
\left.H_{x}^{1}\right|_{z=0+}-\left.H_{x}^{2}\right|_{z=0-}=\left.2 a E_{x}^{1}\right|_{z=0}, \tag{31}\\
\left.H_{y}^{1}\right|_{z=0+}-\left.H_{y}^{2}\right|_{z=0-}=\left.2 a E_{y}^{1}\right|_{z=0} . \tag{32}
\end{gather*}
$$

We get in polar coordinates:

$$
\begin{align*}
& v_{r}=\left[-\frac{r_{T M}+a^{2} T}{1+a^{2} T} \widetilde{N}_{r}+\frac{k_{z}}{\omega} \frac{a T}{1+a^{2} T} \widetilde{N}_{\theta}\right] e^{i k_{z} z_{0}} \tag{33}\\
& v_{\theta}=\left[-\frac{\omega}{k_{z}} \frac{a T}{1+a^{2} T} \widetilde{N}_{r}+\frac{r_{T E}-a^{2} T}{1+a^{2} T} \widetilde{N}_{\theta}\right] e^{i k_{z} z_{0}} \tag{34}\\
& v_{z}=\frac{k_{r}}{k_{z}}\left[\frac{r_{T M}+a^{2} T}{1+a^{2} T} \widetilde{N}_{r}-\frac{k_{z}}{\omega} \frac{a T}{1+a^{2} T} \widetilde{N}_{\theta}\right] e^{i k_{z} z_{0}} \tag{35}
\end{align*}
$$

where $r_{T M}, r_{T E}$ are Fresnel reflection coefficients

$$
\begin{equation*}
r_{T M}\left(\omega, k_{r}\right)=\frac{\varepsilon(\omega) k_{z}-K_{z}}{\varepsilon(\omega) k_{z}+K_{z}}, \quad r_{T E}\left(\omega, k_{r}\right)=\frac{k_{z}-K_{z}}{k_{z}+K_{z}} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(\omega, k_{r}\right)=\frac{4 k_{z} K_{z}}{\left(k_{z}+K_{z}\right)\left(\varepsilon(\omega) k_{z}+K_{z}\right)} \tag{37}
\end{equation*}
$$

At this point it is convenient to define the local matrix R resulting from equations (33), (34):

$$
R\left(a, \varepsilon(\omega), \omega, k_{r}\right) \equiv \frac{1}{1+a^{2} T}\left(\begin{array}{cc}
-r_{T M}-a^{2} T & \frac{k_{z}}{\omega} a T \tag{38}\\
-\frac{\omega}{k_{z}} a T & r_{T E}-a^{2} T
\end{array}\right) .
$$

The tangential local components of the electric field in the interval $0<z<d$ from the point dipole (16),(17) located at ($0,0, z_{0}$) are expressed in terms of matrices $R_{1}(\omega), R_{2}(\omega)$ as follows:

$$
\begin{align*}
& \binom{E_{r}}{E_{\theta}}=\frac{e^{i k_{z} z}}{l-R_{2} R_{1} e^{2 i k_{z} d}}\left[R_{2} R_{1}\binom{N_{r}}{N_{\theta}} e^{i k_{z}\left(2 d-z_{0}\right)}+R_{2}\left(\frac{\widetilde{N_{r}}}{\widetilde{N}_{\theta}}\right) e^{i k_{z} z_{0}}\right] \\
& +\frac{e^{i k_{z}(2 d-z)}}{l-R_{1} R_{2} e^{2 i k_{z} d}}\left[R_{1} R_{2}\left(\frac{\widetilde{N_{r}}}{\widetilde{N}_{\theta}}\right) e^{i k_{z} z_{0}}+R_{1}\binom{N_{r}}{N_{\theta}} e^{-i k_{z} z_{0}}\right], \tag{39}
\end{align*}
$$

in (39) the local components of the electric field are obtained by a summation of multiple reflections from media with indices 1 and 2 .

It is convenient to define four matrices entering (39) after Wick rotation:

$$
\begin{align*}
& M^{1}=\left(I-R_{2}(i \omega) R_{1}(i \omega) e^{-2 k_{z} d}\right)^{-1} R_{2}(i \omega) R_{1}(i \omega) \tag{40}\\
& M^{2}=\left(I-R_{2}(i \omega) R_{1}(i \omega) e^{-2 k_{z} d}\right)^{-1} R_{2}(i \omega) \tag{41}\\
& M^{3}=\left(I-R_{1}(i \omega) R_{2}(i \omega) e^{-2 k_{z} d}\right)^{-1} R_{1}(i \omega) R_{2}(i \omega) \tag{42}\\
& M^{4}=\left(I-R_{1}(i \omega) R_{2}(i \omega) e^{-2 k_{z} d}\right)^{-1} R_{1}(i \omega) \tag{43}
\end{align*}
$$

After integration over polar coordinates we express scattered electric Green functions at imaginary frequencies for coinciding arguments $\mathbf{r}=\mathbf{r}^{\prime}$ in terms of matrix elements of matrices M :

$$
\begin{align*}
& D_{x x}^{E, s c}\left(i \omega, \mathbf{r}=\mathbf{r}^{\prime}\right)=D_{y y}^{E, s c}\left(i \omega, \mathbf{r}=\mathbf{r}^{\prime}\right)=-\frac{1}{8 \pi} \int_{0}^{\infty} d k_{r} k_{r} \\
& \times\left[k_{z}\left(e^{-2 k_{z} d} M_{11}^{1}+e^{-2 k_{z} z_{0}} M_{11}^{2}+e^{-2 k_{z} d} M_{11}^{3}+e^{-2 k_{z}\left(d-z_{0}\right)} M_{11}^{4}\right)\right. \\
& \left.+\frac{\omega^{2}}{k_{z}}\left(e^{-2 k_{z} d} M_{22}^{1}+e^{-2 k_{z} z_{0}} M_{22}^{2}+e^{-2 k_{z} d} M_{22}^{3}+e^{-2 k_{z}\left(d-z_{0}\right)} M_{22}^{4}\right)\right] \tag{44}
\end{align*}
$$

$$
\begin{align*}
& D_{z z}^{E, s c}\left(i \omega, \mathbf{r}=\mathbf{r}^{\prime}\right)=-\frac{1}{4 \pi} \int_{0}^{\infty} d k_{r} \frac{k_{r}^{3}}{k_{z}} \\
\times & {\left.\left[-e^{-2 k_{z} d} M_{11}^{1}+e^{-2 k_{z} z_{0}} M_{11}^{2}-e^{-2 k_{z} d} M_{11}^{3}+e^{-2 k_{z}\left(d-z_{0}\right)} M_{11}^{4}\right)\right] } \tag{45}
\end{align*}
$$

The Casimir-Polder potential can be evaluated by substituting (44), (45) into the formula

$$
\begin{equation*}
U\left(z_{0}\right)=-\int_{0}^{\infty} \frac{d \omega}{2 \pi} \alpha^{i j}(i \omega) D_{i j}^{E, s c}\left(i \omega, \mathbf{r}^{\prime}, \mathbf{r}^{\prime}\right) \tag{46}
\end{equation*}
$$

For Chern-Simons layers in vacuum $\varepsilon(\omega)=1$ for $z<0$ and $z>d$.

$$
\begin{align*}
& M^{1}=M^{3}=-\frac{1}{\left(1+a_{1}^{2}\right)\left(1+a_{2}^{2}\right) \operatorname{det}\left[I-R_{1} R_{2} e^{-2 k_{z} d}\right]} \\
& \times\left(\begin{array}{cc}
a_{1} a_{2}\left(1-a_{1} a_{2}\left(1-e^{-2 k_{z} d}\right)\right) & a_{1} a_{2}\left(a_{1}+a_{2}\right) \frac{k_{z}}{\omega} \\
-a_{1} a_{2}\left(a_{1}+a_{2}\right) \frac{\omega}{k_{z}} & a_{1} a_{2}\left(1-a_{1} a_{2}\left(1-e^{-2 k_{z} d}\right)\right)
\end{array}\right), \tag{47}\\
& M^{2}=-\frac{1}{\left(1+a_{1}^{2}\right)\left(1+a_{2}^{2}\right) \operatorname{det}\left[I-R_{1} R_{2} e^{-2 k_{z} d}\right]} \\
& \times\left(\begin{array}{cc}
a_{2}^{2}\left(1+a_{1}^{2}\left(1-e^{-2 k_{z} d}\right)\right) & -a_{2}\left(1+a_{1}^{2}+a_{1} a_{2} e^{-2 k_{z} d}\right) \frac{k_{z}}{\omega} \\
a_{2}\left(1+a_{1}^{2}+a_{1} a_{2} e^{-2 k_{z} d}\right) \frac{\omega}{k_{z}} & a_{2}^{2}\left(1+a_{1}^{2}\left(1-e^{-2 k_{z} d}\right)\right)
\end{array}\right), \tag{48}\\
& M^{4}=-\frac{1}{\left(1+a_{1}^{2}\right)\left(1+a_{2}^{2}\right) \operatorname{det}\left[I-R_{1} R_{2} e^{-2 k_{z} d}\right]} \\
& \times\left(\begin{array}{cc}
a_{1}^{2}\left(1+a_{2}^{2}\left(1-e^{-2 k_{z} d}\right)\right) & -a_{1}\left(1+a_{2}^{2}+a_{1} a_{2} e^{-2 k_{z} d}\right) \frac{k_{z}}{\omega} \\
a_{1}\left(1+a_{2}^{2}+a_{1} a_{2} e^{-2 k_{z} d}\right) \frac{\omega}{k_{z}} & a_{1}^{2}\left(1+a_{2}^{2}\left(1-e^{-2 k_{z} d}\right)\right)
\end{array}\right) . \tag{49}
\end{align*}
$$

Note that

$$
\begin{align*}
\frac{1}{\left(1+a_{1}^{2}\right)\left(1+a_{2}^{2}\right) \operatorname{det}\left[I-R_{1} R_{2} e^{-2 k_{z} d}\right]} & \\
=\frac{1}{1+a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} e^{-2 k_{z} d}}+ & +a_{1}^{2} a_{2}^{2}\left(1-e^{-2 k_{z} d}\right)^{2} \\
& =\frac{\gamma_{1}}{1+\beta_{1} y}+\frac{\gamma_{2}}{1+\beta_{2} y}
\end{align*}
$$

with $y=\exp \left(-2 k_{z} d\right), A=a_{1}^{2} a_{2}^{2}, B=2\left(a_{1} a_{2}-a_{1}^{2} a_{2}^{2}\right), C=(1+$ $\left.a_{1}^{2}\right)\left(1+a_{2}^{2}\right), y_{1,2}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}=\left(a_{1} a_{2}-1 \pm i\left(a_{1}+a_{2}\right)\right) /\left(a_{1} a_{2}\right)$, $\beta_{1}=-1 / y_{1}, \beta_{2}=-1 / y_{2}, \gamma_{1}=1 /\left(A y_{1}\left(y_{2}-y_{1}\right)\right), \gamma_{2}=1 /\left(A y_{2}\left(y_{1}-\right.\right.$ $\left.y_{2}\right)$).

Decomposition of the denominator in (50) into two terms leads to an analytic result for the Casimir-Polder potential in terms of Lerch transcendent functions. We change variables

$$
\begin{equation*}
\int_{0}^{\infty} k_{r} d k_{r} f\left(k_{z}\right)=\int_{\omega}^{\infty} k_{z} d k_{z} f\left(k_{z}\right) \tag{51}
\end{equation*}
$$

and use the integral

$$
\begin{array}{r}
G_{0}(\chi, \beta, \omega) \equiv \int_{\omega}^{\infty} \frac{e^{-2 k_{z} \chi}}{1+\beta e^{-2 k_{z} d}} d k_{z}=\frac{1}{2 d} \int_{0}^{e^{-2 \omega d}} \frac{y^{\frac{\chi}{d}-1}}{1+\beta y} d y \\
=\frac{e^{-2 \omega \chi}}{2 d} \Phi\left(-\beta e^{-2 \omega d}, 1, \frac{\chi}{d}\right) \tag{52}
\end{array}
$$

where $\Phi\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a Lerch transcendent function.

At large distances of the atom from half spaces the Casimir-Polder potential has the following form:

$$
\begin{align*}
& U_{s}\left(z_{0}, d\right)=U_{s 1}\left(z_{0}, d\right)+U_{s 2}(d)=\frac{\alpha_{x x}(0)+\alpha_{y y}(0)+\alpha_{z z}(0)}{32 \pi^{2} d^{4}} \\
& \times \sum_{i=1,2} \gamma_{i}\left[-a_{2}^{2}\left(1+a_{1}^{2}\right) \Phi\left(y_{i}^{-1}, 4, \frac{z_{0}}{d}\right)-a_{1}^{2}\left(1+a_{2}^{2}\right) \Phi\left(y_{i}^{-1}, 4, \frac{d-z_{0}}{d}\right)\right. \\
& \left.+a_{1}^{2} a_{2}^{2} \Phi\left(y_{i}^{-1}, 4, \frac{d+z_{0}}{d}\right)+a_{1}^{2} a_{2}^{2} \Phi\left(y_{i}^{-1}, 4, \frac{2 d-z_{0}}{d}\right)\right]+U_{s 2}(d) \tag{53}\\
& \left.\begin{array}{r}
U_{s 2}(d)=\frac{\alpha_{x x}(0)+\alpha_{y y}(0)-\alpha_{z z}(0)}{32 \pi^{2} d^{4}}\left(\operatorname{Li}_{4}\left(\frac{a_{1} a_{2}}{\left(a_{1}+i\right)\left(a_{2}+i\right)}\right)\right. \\
+
\end{array} \operatorname{Li}_{4}\left(\frac{a_{1} a_{2}}{\left(a_{1}-i\right)\left(a_{2}-i\right)}\right)\right) .
\end{align*}
$$

Here $\Phi\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ - Lerch transcendent function, $\operatorname{Li}_{4}(z)$ is a polylogarithm function, $y_{1,2}=\left(a_{1} a_{2}-1 \pm i\left(a_{1}+a_{2}\right)\right) /\left(a_{1} a_{2}\right), \gamma_{1}=$ $1 /\left(A y_{1}\left(y_{2}-y_{1}\right)\right), \gamma_{2}=1 /\left(A y_{2}\left(y_{1}-y_{2}\right)\right), A=a_{1}^{2} a_{2}^{2}$,

Ratios of the Casimir-Polder potential of a neutral polarizable isotropic atom located between two plane Chern-Simons layers in vacuum $U_{s}\left(z_{0}, d\right)$ to the potential of the same atom between two perfectly conducting planes $U_{i d}\left(z_{0}, d\right)$, here z_{0} is a distance of the atom from the layer characterized by a constant a_{2}, d is a distance between the layers.

Ratios of the Casimir-Polder potentials $U_{s}\left(z_{0}, d\right) / U_{i d}\left(z_{0}, d\right)$ differing by 180 degree rotation of the Chern-Simons layer characterized by a parameter $a_{2}: a_{2}=a_{1}$ and $a_{2}=-a_{1}$. Here z_{0} is a distance of the atom from the layer characterized by a constant a_{2}, d is a distance between the layers, a dimensionless parameter $\nu=a_{1} / \alpha$ is quantized in quantum Hall layers and Chern insulators.

Ratio $\Delta U=U_{s}\left(z_{0}=d / 2, d, a_{2}=-a_{1}\right)-U_{s}\left(z_{0}=d / 2, d, a_{2}=a_{1}\right)$ to $\max \Delta U \approx 0.00587\left|U_{i d}\left(z_{0}=d / 2, d\right)\right|, \max \Delta U$ holds at $a_{1} \approx$ 0.678 .

Casimir energy of two Chern-Simons layers

Chern-Simons plane layers in vacuum characterized by a_{1} and a_{2} are located at $z=d$ and $z=0$ respectively. We define the matrix $R_{\text {down }}=R\left(a_{2}\right)$ of the reflection of electromagnetic waves (propagating downwards) from the Chern-Simons layer with $z=0$:

$$
R\left(a_{2}\right)=\left(\begin{array}{cc}
r_{s} & r_{p \rightarrow s} \tag{55}\\
r_{s \rightarrow p} & r_{p}
\end{array}\right)=\frac{a_{2}}{1+a_{2}^{2}}\left(\begin{array}{cc}
-a_{2} & 1 \\
1 & a_{2}
\end{array}\right)
$$

We write the matrix $R_{u p}$ of reflection of electromagnetic waves (propagating upwards) from the layer with $z=d$. After the Euclidean rotation we get

$$
\begin{equation*}
R_{u p}=S R\left(a_{1}\right) S \tag{56}
\end{equation*}
$$

where

$$
S=\left(\begin{array}{cc}
e^{-d \sqrt{\omega^{2}+k_{x}^{2}+k_{y}^{2}}} & 0 \tag{57}\\
0 & e^{-d \sqrt{\omega^{2}+k_{x}^{2}+k_{y}^{2}}}
\end{array}\right)
$$

is the shift matrix that arises from the coordinate change $x_{1}=x$, $y_{1}=-y, z_{1}=-z+d$.

Argument principle

$$
\begin{gathered}
\frac{1}{2 \pi i} \oint \phi(\omega) \frac{d}{d \omega} \ln f(\omega) d \omega=\sum \phi\left(\omega_{0}\right)-\sum \phi\left(\omega_{\infty}\right) \\
\phi(\omega)=\omega / 2 \\
f(\omega)=\operatorname{det}\left(I-R_{\text {down }}(\omega) R_{\text {up }}(\omega)\right)
\end{gathered}
$$

Casimir energy of two Chern-Simons layers in vacuum

The Casimir energy of two Chern-Simons layers in vacuum is [V.N.Marachevsky, Theor.Math.Phys., 2017]

$$
\begin{gathered}
E\left(-a_{1}, a_{2}, d\right)=\frac{1}{2} \iiint \frac{d \omega d k_{x} d k_{y}}{(2 \pi)^{3}} \ln \operatorname{det}\left(I-R_{u p} R_{\text {down }}\right)= \\
\frac{1}{4 \pi^{2}} \int_{0}^{+\infty} d r r^{2} \ln \operatorname{det}\left(I-e^{-2 d r} R\left(a_{1}\right) R\left(a_{2}\right)\right)= \\
\frac{1}{4 \pi^{2}} \int_{0}^{+\infty} d r r^{2} \ln \operatorname{det}\left(I-e^{-2 d r} Q\right),
\end{gathered}
$$

where

$$
Q=a_{1} a_{2}\left(\begin{array}{cc}
\frac{1}{\left(a_{1}-i\right)\left(a_{2}+i\right)} & 0 \tag{60}\\
0 & \frac{1}{\left(a_{1}+i\right)\left(a_{2}-i\right)}
\end{array}\right) .
$$

$$
\begin{align*}
E\left(a_{1}, a_{2}, d\right)=-\frac{1}{16 \pi^{2} d^{3}} & \left(\operatorname{Li}_{4}\left(\frac{a_{1} a_{2}}{\left(a_{1}+i\right)\left(a_{2}+i\right)}\right)\right. \\
& \left.+\operatorname{Li}_{4}\left(\frac{a_{1} a_{2}}{\left(a_{1}-i\right)\left(a_{2}-i\right)}\right)\right) \tag{61}
\end{align*}
$$

where $\operatorname{Li}_{4}(x)=\sum_{k=1}^{+\infty} x^{k} / k^{4}=-\frac{1}{2} \int_{0}^{+\infty} d r r^{2} \ln \left(1-x e^{-r}\right)$.
Note that for $a_{1}=-a_{2}$ the force is attractive for every a_{1} (due to a theorem that the Casimir force between mirror objects is attractive). For $a_{1}=a_{2}$ [V. N. Markov and Yu. M. Pis'mak, J. Phys. A: Math. Gen., 2006] one gets the Casimir energy of two Chern-Simons layers with identically selected directions of the layers in space. In this case the force is repulsive at all distances d for $a_{1} \in\left[0, a_{0}\right]$, where $a_{0} \approx$ 1.032502 , and attractive at all distances d for $a_{1}>a_{0}$.

$a_{1}=a_{2}$ case is shown, leads to repulsion for two layers in vacuum for $a_{1} \in\left[0, a_{0}\right]$, where $a_{0} \approx 1.032502$, and to attraction for $a_{1}>a_{0}$.

$a_{1}=-a_{2}$ is shown, leads to attraction in vacuum and for coinciding dielectrics.

The Casimir effect for Chern-Simons layers at the boundaries of dielectric and metal half spaces
[V.N.Marachevsky, Phys.Rev.B, 2019]
[V.N.Marachevsky, Mod.Phys.Lett.A, 2020]

Casimir energy

Consider two dielectric half spaces with Chern-Simons terms characterized by constants a_{1}, a_{2} on their surfaces respectively. Assume there is a vacuum slit L between half spaces.
The reflection matrix $R_{\text {down }}=R\left(a_{2}\right)$ from the $z \leq 0$ half space is defined by:

$$
R\left(a_{2}\right)=\left(\begin{array}{cc}
r_{s} & r_{p \rightarrow s} \tag{62}\\
r_{s \rightarrow p} & r_{p}
\end{array}\right)=\frac{1}{1+a_{2}^{2} T}\left(\begin{array}{cc}
r_{s}^{f}-a_{2}^{2} T & a_{2} T \\
a_{2} T & r_{p}^{f}+a_{2}^{2} T
\end{array}\right) .
$$

The reflection matrix from the $z \geq L$ half space is defined after euclidean rotation by

$$
\begin{equation*}
R_{u p}=S R\left(a_{1}\right) S \tag{63}
\end{equation*}
$$

where

$$
S=\left(\begin{array}{cc}
e^{-L \sqrt{\omega^{2}+k_{x}^{2}+k_{y}^{2}}} & 0 \tag{64}\\
0 & e^{-L \sqrt{\omega^{2}+k_{x}^{2}+k_{y}^{2}}}
\end{array}\right)
$$

is a matrix due to a change of the coordinate system $x_{1}=x, y_{1}=$ $-y, z_{1}=-z+L$.

The Casimir energy is equal

$$
\begin{gather*}
E\left(-a_{1}, a_{2}, L\right)=\frac{1}{2} \iiint \frac{d \omega d k_{x} d k_{y}}{(2 \pi)^{3}} \ln \operatorname{det}\left(I-R_{u p} R_{d o w n}\right)= \\
\frac{1}{4 \pi^{2}} \int_{0}^{+\infty} d r r^{2} \ln \operatorname{det}\left(I-e^{-2 L r} R\left(a_{1}\right) R\left(a_{2}\right)\right) . \tag{65}
\end{gather*}
$$

Position of the minimum of the energy L_{0} for Chern-Simons layers at the boundaries of two SiO_{2} glass half spaces, $a \equiv a_{1}=a_{2}$.

Energy on a unit surface for Chern-Simons layers with $a_{1}=a_{2}=$ 0.542 at the boundaries of two SiO_{2} glass half spaces. The minimum of the energy is at $L_{0}=26.52 \mathrm{~nm}$.

Ratio of the force F with Chern-Simons layers at the boundaries of two SiO_{2} glass half spaces to the force $F_{\text {Lif }}$ between two SiO_{2} glass half spaces. Here $a_{1}=a_{2}=0.542$.

Explaining the minimum of the Casimir energy

Lifshitz force power law between two dielectrics/metals effectively changes from retarded L^{-4} to nonretarded L^{-3} behaviour at distances of the order $L \sim 10 \mathrm{~nm}$.
On the other hand, the force between two Chern-Simons layers in vacuum has L^{-4} behavior at all separations and thus dominates the total force at separations of the order $L \lesssim 10 \mathrm{~nm}$. For the condition $a \equiv a_{1}=a_{2}$ the Casimir force between two Chern-Simons layers in vacuum is repulsive at all distances L for an interval $a \in\left[0, a_{0}\right]$, where $a_{0} \approx 1.032502$.
As a result, the sum of the Lifshitz force and the force between two Chern-Simons layers in vacuum effectively leads to a repulsive force at short separations and to an attractive force at large separations.

Conclusions

1. A novel gauge-invariant formalism in the Casimir effect is presented.
2. Analytic results for the Casimir-Polder potential of a neutral anisotropic atom between two half-spaces with Chern-Simons boundary layers are derived and expressed through Lerch transcendent functions and polylogarithms.
3. P-odd three-body vacuum effects are predicted: there is a difference in values of the Casimir-Polder potential of a neutral atom after 180 degree rotation of one of the Chern-Simons layers. A neutral atom is described by QED dipole interaction.

Conclusions

4. A diffraction problem for reflection of an electrmagnetic wave from a dielectric with Chern-Simons layer at its surface is solved.
5. The Casimir energy of two Chern-Simons layers and two Chern-Simons layers on top of dielectrics separated by a vacuum slit is derived in a scattering approach in terms of reflection coefficients.
6. Existence of a regime with the minimum of the Casimir energy due to presence of Chern-Simons layers at the surfaces of dielectrics at a distance of the order 10 nm , the Casimir force in this case is attractive at large distances and repulsive at short distances between the two dielectrics with Chern-Simons boundary layers.

Acknowledgments

The financial support from the Russian Science Foundation project № $22-13-00151$ is acknowledged.

