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Unitary Irreps of ISO↑(1,3) (or its covering ISL(2,C))←→
relativistic particles

Classification of unitary irreps of Poincaré group ISO↑(1,3), and its

covering ISL(2,C), was given by
[

E .Wigner(1939,1947),
V .Bargmann,E .Wigner(1948)

]

. Note

that unitary irreps of the noncompact group ISL(2,C), which are
interesting from the physical point of view, are infinite dimensional.
Irreducible representations of covering of the Poincaré group ISL(2,C)
are defined (as induced irreps) in the infinite dimensional space of the
Wigner-Bargmann wave functions, which do not carry any information
about the relativistic equations for the relativistic fields (e.g., about
Dirac equations for spin 1/2 fields, or Rarita-Schwinger equations for
spin 3/2 fields). The transformation of the Wigner-Bargmann wave
functions into the local relativistic fields (corresponding to the irreps of
the Poincaré group) are carried out, by definition, by the special
Wigner operators. In this report we introduce and study generalized
Wigner operators for massive and massless irreps of ISL(2,C).
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WB wave functions φᾱ(k)
Wigner operators←→ relativistic fields ψᾱ(k)

Here we show how the relativistic equations for local massive
relativistic fields are dictated by the form of Wigner operators.

For the massless irreps of the infinite spin (or continue spin) the fields
are parameterized by an additional variable – commuting vector or
spinor. These variables are inf. dim. analogs of the discrete indices of
compact subgroup SU(2) in the massive case. The equations of
motion for fields of infinite spin were derived in both formulations (with
additional commuting vector, or spinor). We show that the relativistic
fields for the standard massless helicity representations (constructed
in this way) are obtained in the special limit of the infinite spin (or
continue spin) irreps. The corresponding relativistic fields are gauge
potentials and satisfy the relations that determine free massless higher
spin fields.
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To characterize the unitary irreps of d-dimensional Poincaré group
ISO↑(1, d − 1), or its covering ISpin↑(1, d − 1), we need to consider the
corresponding irreps of the Lie algebra iso(1, d − 1) = ispin(1, d − 1) with
generators P̂n (components of momentum) and M̂mk (components of the
angular momentum) which satisfy defining relations

[P̂n, P̂m] = 0 , [P̂n, M̂mk ] = i (ηknP̂m − ηmnP̂k) ,

[M̂nm, M̂kℓ] = i(ηnk M̂mℓ − ηmkM̂nℓ + ηmℓM̂nk − ηnℓM̂mk ) ,

where ||ηmk || = diag(+1,−1, . . . ,−1) – metric in R
1,d−1.

————————————————-
The Lie algebra iso(1,d − 1) has [(d + 1)/2] Casimir operators since
the algebra iso(1,d − 1) is obtained by the contraction from the simple
Lie algebra so(d + 1,C) of rank [(d + 1)/2], where [q] denote the
integer part of q.

Thus, the Lie algebra iso(1,3) of the Poincaré group for d=4 has
[5/2] = 2 Casimir operators.
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The d-dim. Poincaré algebra iso(1, 3) has two Casimir operators

C2 = P̂nP̂n , C4 = Ŵ nŴn

where Ŵn = 1
2 εnmkr M̂mk P̂r are components of Pauli-Lubansky vector which

satisfy

ŴnP̂n = 0 , [Ŵk , P̂n] = 0 , [Ŵm, Ŵn] = i εmnkr Ŵ k P̂r .

Classification of the ISL(2,C)-irreps:
[E.P.Wigner (1939); V.Bargmann, E.P.Wigner(1948)]
1. Massive irreps . On the space of states of massive irreps the Casimir
operators are proportional to the unite operator I:

P̂nP̂n = m2 I (m2 > 0), Ŵ nŴn = −m2 j(j + 1) I ,

where the real number m > 0 is called mass and the real number j ∈ Z≥0/2
is called spin.

2. Massless irreps . The Casimir operators of iso(1, 3) are

P̂nP̂n = m2 = 0 , Ŵ 2 = Ŵ nŴn = −µ2 .

In this case we have two subcases: A. µ2 = 0 and B. µ2 6= 0.
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In massless case A, when µ2 = 0, we obtain

Ŵ 2 = 0, P̂2 = 0, P̂nŴ n = 0 R1,3

=⇒ Ŵn = Λ̂ · P̂n ,

where element Λ̂ ∈ iso(1,3) is central and called helicity operator. Its
eigenvalues are Λ = 0,±1/2,±1,±3/2, . . . .
We call these representations as helicity representations.
For example, photon is a particle with two possible states
characterized by helicities Λ = ±1.

In massless case B, when µ2 6= 0, we have

Ŵ 2 = −µ2, P̂2 = 0, P̂nŴ n = 0 .

These irreps are called the infinite spin (or continues spin)
representations.
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Definition of the covering group ISL(2,C) of ISO↑(1, 3)

To fix the notation, we recall the definition of the covering group ISL(2,C) of
the Poincare group ISO↑(1, 3). The group ISL(2,C) is the set of all pairs
(A,X), where A ∈ SL(2,C), and X is a Hermitian (2× 2) matrix (i.e. belongs
to the space H of Hermitian matrices), which can always be represented in
the form (xm ∈ R)

X = x0 σ
0 + x1 σ

1 + x2 σ
2 + x3 σ

3 = (x σ) =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

∈ H .

Here the components of the 4-vector: σm = (σ0 = I2, σ1, σ2, σ3), where
σk |k=1,2,3 are Pauli matrices, form the basis in H = R1,3. The multiplication in
the group ISL(2,C) is given by the formula

(A,Y ) · (A′,X) = (A · A′, A · X · A† + Y ) .

From this formula we have the SL(2,C) group action in the Minkowski space
H = R1,3

X → X ′ = A · X · A† ∈ H ⇒ (x ′σ) = A · (xσ) · A† .
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This action gives the Lorentz rotation of a vector x ∈ R
1,3:

σkx ′
k = xm (A · σm · A†) = σk Λ m

k (A) xm ⇒ x ′
k = Λ m

k (A) xm ,

where Xαβ̇ = xk σ
k
αβ̇

, (α, β̇ = 1,2) and the (4× 4) matrix

||Λm
k (A)|| ∈ SO↑(1,3) is determined from the standard relations

A · σm · A† = σk Λ m
k (A) ⇔ A α

ξ A∗ β̇
γ̇ σm

αβ̇
= σk

ξγ̇ Λ m
k (A) ,

which we need below.

We also need to have dual set of σ-matrices:

σ̃m = (σ0,−σ1,−σ2,−σ3) , (σ̃m)α̇β .
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Massive unitary representations of ISL(2,C)

In the massive case: m > 0, the unitary irreps of the group ISL(2,C) are
characterized by spin j = 0, 1

2 , 1,
3
2 , . . . and act in the spaces of Wigner-

Bargmann (WB) wave functions φ(α1...α2j )(k), which are components of a
completely symmetric SU(2)-tensor of rank 2j:
[E.P.Wigner (1939,1947); V.Bargmann, E.P.Wigner(1948)]

[U(A, xmσm) · φ]ᾱ(k) ≡ φ ′
ᾱ(k) = eixmkm T (j)

ᾱβ̄
(hA,Λ−1·k ) φβ̄(Λ

−1 · k) .

Here k = (k0, k1, k2, k3) denotes the four-momentum of a particle with mass
m: (k)2 = k2

0 − k2
1 − k2

2 − k2
3 = m2, matrix Λ ∈ SO↑(1, 3) is defined by

A ∈ SL(2,C) as before

A · σm · A† = σk Λ m
k (A)

and we use the concise notation φᾱ(k) ≡ φ(α1...α2j )(k), the indices ᾱ, β̄ are
multi-indices (α1 . . . α2j), (β1 . . . β2j); T (j) is a finite-dimensional irreducible
SU(2) representation with spin j, acting in the space of symmetric
spin-tensors φ(α1...α2j ) and hA,Λ−1·k - an element of stability subgroup
SU(2) ⊂ SL(2,C).
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Stability subgroup
Let us fix some test momentum q = (q0, q1, q2, q3) such that (q)2 = m2,
q0 > 0 (e.g., q = (m, 0, 0, 0)) and choose a representative A(k) ∈ SL(2,C):

(kσ) = A(k) · (qσ) · A†

(k) ⇔ km = (Λ(k))
n

m qn , (1)

where (kσ) = knσn, (qσ) = qnσn. The relation between the matrices A(k) and
Λ(k) ≡ Λ(A(k)) is the standard.

Definition. A stability subgroup (little group) Gq ⊂ SL(2,C) of the test
momentum q is the set of matrices A ∈ SL(2,C) satisfying the condition

A · (qσ) · A† = (qσ) ⇔ A γ
α (qnσn)γα̇ (A∗) α̇

γ̇ = (qnσn)αγ̇ .

In the massive case (q)2 = m2, the stability subgroup Gq is isomorphic to
SU(2). It is evident for q = (m, 0, 0, 0), since (qσ) = m · I2, but it is true for
any choice of test momenta q.

The matrix A(k) ∈ SL(2,C) is defined up to right multiplication A(k) → A(k) · U
by an element U ∈ Gq = SU(2):

(A(k) · U) · (qσ) · (A(k) · U)† = A(k) · (U · (qσ) · U†) · A†

(k) = (kσ) .

For each k we fix a unique matrix A(k).
11 / 35



Thus, unique representative element A(k) ∈ SL(2,C) numerates the
left coset in SL(2,C) with respect to the right action of the subgroup
Gq = SU(2) on the elements A ∈ SL(2,C): A ∼ A · U, i.e. A(k) are
points in the coset space SL(2,C)/SU(2).

Now the elements hA, k of the stability subgroup SU(2) ⊂ SL(2,C),
which appeared in the definition of the E.Wigner massive irreps, are
defined as

A · A(k) = A(Λ·k) · hA, k ⇒ A−1
(Λ·k) · A · A(k) = hA, k ∈ SU(2) ,

The first relation follows from

(A · A(k)) (qσ) (A · A(k))
† = A (kσ)A† = (Λ · k , σ) = A(Λ·k) (qσ)A†

(Λ·k) .

Note, that the matrices (A(k))
a

α have two kind of indices: the left
SL(2,C)-type index α and the right SU(2)-type index a.
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Recall again the Wigner formula for unitary spin j irreps U of ISL(2,C)
defined by the following action of the element (A,a) ∈ ISL(2,C):

[U(A, a) · φ]ᾱ(k) ≡ φ ′
ᾱ(k) = eiamkm T (j)

ᾱβ̄
(hA,Λ−1·k) φβ̄(Λ

−1 · k) .

Here (in massive case) T (j) – finite-dimensional irrep of SU(2); we
use the concise notation for WB wave function φᾱ(k) ≡ φ(α1...α2j )(k).
The element (dependent on k)

hA,Λ−1·k = A−1
(k) · A · A(Λ−1·k) ∈ SU(2) , (1)

belongs to the stability subgroup SU(2) ⊂ SL(2,C) and the matrix
Λ ∈ SO↑(1,3) is related to A ∈ SL(2,C) in standard way.
Since hA,Λ−1·k ∈ SU(2), Eq. (1) is written in another equivalent form

hA,Λ−1·k = h†−1
A,Λ−1·k = A†

(k) · A†−1 · A†−1
(Λ−1·k) . (2)

Since hA,Λ−1·k depends on k the coordinate representation of φᾱ(k)
can not be a local field!!! How can we solve this problem?
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In the representation T (j), the element h ∈ SU(2) is the matrix, which can be
written in the factorized form (p + r = 2j)

T (j)
β̄ᾱ

(
h
)
=
(
h⊗(p+r)

)

β̄ᾱ
=
[

h α1
β1
· · · h αp

βp
· h αp+1

βp+1
· · · h αp+r

βp+r

]

=

=
[

h α1
β1
· · · h αp

βp
·
(
h†−1

) αp+1

βp+1
· · ·
(
h†−1

) αp+r

βp+r

]

,

where r factors are chosen as h → h†−1, since h ∈ SU(2).
Then, we use the factorized forms (1), (2) and write the matrix T (j)

β̄ᾱ

(
hA,Λ−1·k

)

in the factorized form

T (j)
(
hA,Λ−1·k

)
=
(

A−1
(k) · A · A(Λ−1·k)

)⊗p
⊗
(

A†

(k) · A†−1 · A†−1
(Λ−1·k)

)⊗r
=

=
(

A−1 ⊗p
(k) ⊗ A† ⊗r

(k)

)

·
(

A⊗p ⊗ A†−1 ⊗r
)

·
(

A⊗p
(Λ−1·k) ⊗ A†−1 ⊗r

(Λ−1·k)

)

and for the Wigner formula we have φ′(k) = T (j)
(
hA,Λ−1·k

)
φ(Λ−1 · k) =

=
(

A⊗p
(k) ⊗ A†−1 ⊗r

(k)

)−1
·
(

A⊗p ⊗ A†−1 ⊗r
)

·
(

A⊗p
(Λ−1·k) ⊗ A†−1 ⊗r

(Λ−1·k)

)

φ(Λ−1 · k)
︸ ︷︷ ︸

=

=
(

A⊗p
(k) ⊗ A†−1 ⊗r

(k)

)−1
·
(

A⊗p ⊗ A†−1 ⊗r
)

· ψ(r)(Λ−1 · k)
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Here we introduce (instead of the Wigner WFs φ(δ1...δp+r )(k))
spin-tensor fields of (p

2 ,
r
2)-type (with r dotted and p undotted indices):

ψ(r )(β̇1...β̇r)

(α1...αp)
(k) :=

[

[A⊗p
(k) ⊗ (A†−1

(k) )
⊗r ] · φ(k)

](β̇1...β̇r )

(α1...αp)
=

= (A(k))
δ1...δp

α1...αp ·
(
A−1†
(k)

)β̇p+1...β̇p+r ;δp+1...δp+rφ(δ1...δpδp+1...δp+r )(k) ,

where
(A(k))

δ1...δp
α1...αp = (A(k))

δ1
α1
· · · (A(k))

δp
αp ,

m−r(A−1†
(k) · (qσ̃)

)β̇1...β̇r ;δ1...δr = m−r(A−1†
(k) · (qσ̃)

)β̇1δ1 · · ·
(
A−1†
(k) · (qσ̃)

)β̇r δr

and we restore the case of the arbitrary test momentum q.
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The upper index (r) of the spin-tensors ψ(r ) distinguishes these
spin-tensors with respect to the number of dotted indices.

Definition. The operators A⊗p
(k) ⊗

( 1
mA†−1

(k) (qσ̃)
)⊗r which convert Wigner

wave functions φ(k) into spin-tensor fields ψ(r )(k) of (p
2 ,

r
2)-type are

called the Wigner operators.

Proposition 1. The ISL(2,C)-representation U is written for fields ψ(r)

as following

[U(A,a) · ψ(r )]
(β̇1...β̇r )
(α1...αp)

(k) =

= eiamkm

[

A γ1...γp
α1...αp

(
A†−1

)β̇1...β̇r

κ̇1...κ̇r

]

ψ(r )(κ̇1...κ̇r)

(γ1...γp)
(Λ−1 · k) ,

where A...
... (A

†−1)...... = [A⊗p ⊗ (A†−1)⊗r ]...... , A ∈ SL(2,C).

Thus, the coordinate representation of the functions ψ(r )(β̇1...β̇r)

(α1...αp)
(k) are

the local relativistic fields.
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Proposition 2. The wave functions ψ(r ) satisfy the Dirac-Pauli-Fierz
(DPF) equations [P.A.M.Dirac (1936), M. Fierz and W. Pauli (1939)]:

km(σ̃m)
γ̇1α1ψ(r )(β̇1...β̇r)

(α1...αp)
(k) = mψ(r+1)(γ̇1β̇1...β̇r )

(α2...αp)
(k) , (r = 0, . . . ,2j − 1) ,

km(σm)γ1β̇1
ψ(r )(β̇1...β̇r )

(α1...αp)
(k) = mψ(r−1)(β̇2...β̇r )

(γ1α1...αp)
(k) , (r = 1, . . . ,2j) ,

which describe the dynamics of a massive relativistic particle with spin
j = (p + r)/2. The compatibility conditions for the system of DPF eqs
are given by the mass shell relations (knkn −m2)ψ(r )(k) = 0.

Proof. Use the definitions of matrices A(k) ∈ SL(2,C)/SU(2):

(k σ̃) · A(k) = A†−1
(k) · (qσ̃) , (kσ) · A†−1

(k) = A(k) · (qσ) ,

where the test momentum frame is (qσ̃) = (qσ) = m I2.

Example. For the case of spin j = 1/2 we have (p + r) = 1 and obtain
Dirac eqs.

km(σ̃m)γ̇α ψ(0)
α (k) = mψ(1)γ̇(k) , km(σm)γβ̇ ψ

(1)β̇(k) = mψ(0)
γ (k) .
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In the case of p + r = 2j , the system of spin-tensor wave functions ψ(r )

which obey the Dirac-Pauli-Fierz equations describes relativistic
particles with spin j .

Proposition 3. Spin-tensor wave functions ψ(r )(β̇1...β̇r )

(α1...αp)
(k) of type (p

2 ,
r
2),

which obey the Dirac-Pauli-Fierz equations, automatically satisfy the
equations

[(Ŵ m Ŵm) ψ]
(r )(β̇1...β̇r )

(α1 ...αp)
(k) = −m2j(j + 1) ψ(r )(β̇1...β̇r )

(α1...αp)
(k) ,

where j = (p
2 + r

2), Ŵm are the components of the Pauli-Lubanski
vector

Ŵm =
1
2
εmnijM

ijPn =
1
2
εmnij Σ̂

ijPn ,

and ŴmŴ m is the Casimir operator for the group ISL(2,C); Σ̂ij — spin
part of M ij .
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The matrices A(k) numerate points of the coset space SL(2,C)/SU(2).
The left action of the group SL(2,C) on SL(2,C)/SU(2) is

A · A(k) = A(Λ·k) · UA,k , A ∈ SL(2,C) , Λ ∈ SO↑(1,3) ,

where matrices A and Λ are related by standard formula A~σA† = Λ~σ
and the element UA,k ∈ SU(2) depends on A and momentum k . Under
this left action the element A ∈ SL(2,C) transforms two columns of the
matrix A(k) as two Weyl spinors. Therefore, it is convenient to
represent the matrix A(k) by using two Weyl spinors µ and λ with

components µα, λα (the matrix A†
(k) will be correspondingly expressed

in terms of the conjugate spinors µ and λ) in the following way:

(A(k))
β

α = 1
(µρ λρ)1/2

(
µ1 λ1

µ2 λ2

)

⇒ (A†−1
(k) )

α̇
β̇
= 1

(µρ̇ λρ̇)1/2

(
λ2̇ −µ2̇
−λ1̇ µ1̇

)

,
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Massless irreps

For massless irreps we choose the test vector
o
p ∈ R

1,3 as follows

|| o
pν || = (

o
p0,

o
p1,

o
p2,

o
p3) = (E , 0, 0,E) (3)

By definition, the finite-dimensional Wigner operators are the matrices
A(p) ∈ SL(2,C) that transform the test momentum

o
p into an arbitrary

momentum p
A(p)(

o
p σ)A†

(p) = (p σ) , (4)

where (p σ) := pµσ
µ. The stability subgroup G o

p
of

o
p is formed by matrices

h ∈ SL(2,C) that preserve
o
p:

h(
o
p σ)h† = (

o
p σ) , (5)

Equation (5) defining the stability subgroup G o
p

of the test momentum
o
p given

in (3) has the following solution

h =

(

e
i
2 θ e− i

2 θ b
0 e− i

2 θ

)

=

(
1 b
0 1

) (

e
i
2 θ 0
0 e− i

2 θ

)

, (6)

where θ ∈ [0, 2π] and b = b1 + ib2.
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The matrices (6) form the ISO(2) group, i.e. G o
p
∼= ISO(2) and stability

group is not compact. The generators of ISO(2):

R̂ = −1
2

(
1 0
0 −1

)

, T̂1 =

(
0 i
0 0

)

, T̂2 =

(
0 −1
0 0

)

, (7)

satisfy the defining relations for the real algebra iso(2)

[T̂1, T̂2] = 0 , [R̂, T̂a] = iεad T̂d . (8)

An element h(θ,~b) of the ISO(2) group can be written as a product

h(θ,~b) = T (~b) · R(θ) ≡ e−ibaT̂a e−iθR̂ , (9)

where T (~b) is the element of the translation subgroup of ISO(2) and
R(θ) is the element of SO(2) ⊂ ISO(2). Here ~b = (b1,b2) ∈ R

2, and
θ ∈ [0,2π) is the angular variable.
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The unitary irreps of ISO(2) group is given by the relation

Φ′(ϕ) =
[

U
(
h(θ,~b)

)
Φ
]

(ϕ) = e−i ~b·~tϕΦ(ϕ− θ) . (10)

It is also convenient to use another discrete basis |n 〉, n ∈ Z, in the
space of the unitary irrep of ISO(2) group. In this basis, the generator
R̂ is diagonal while the generators of Ta are not diagonal

R̂|n 〉 = n|n 〉 , T±|n 〉 = ρ|n ± 1 〉 . (11)

The set of vectors |n 〉 are orthogonal and complete 〈n |m 〉 = δnm,
∑∞

n=−∞ |n 〉〈n | = 1. The function 〈ϕ |n 〉 relating basis vectors |n 〉
and |ϕ 〉 is 〈ϕ |n 〉 = 1√

2π
einϕ. Thus the wave function Φ(ϕ) is

expanded as a Fourier series (Φn := 〈n |Φ 〉/
√

2π)

Φ(ϕ) = 〈ϕ |Φ 〉 =
∞∑

n=−∞
〈ϕ |n 〉〈n |Φ 〉 =

∞∑

n=−∞
Φneinϕ . (12)
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The induced unitary representations of the group SL(2,C) realized on
the Wigner functions Φ(p, ϕ) are constructed according to (10) have
the form:

Φ′(p, ϕ) := [U(A)Φ](p, ϕ) =
∑

φ′ Dϕϕ′(θA,Λ−1p,
~bA,Λ−1p)Φ(Λ

−1p, ϕ′) ,

= e−i~bA,Λ−1p·~tϕΦ(Λ−1p, ϕ− θA,Λ−1p) .
(13)

The transformations Dϕϕ′(θA,Λ−1p,
~bA,Λ−1p) of the Wigner functions

depend on the momentum variable pµ. We assume that the
Lorentz-covariant field Ψ(p, y), which describes massless particles, is
constructed from WF Φ(p, ϕ) via integral transformation

Ψ(p, η) =

2π∫

0

dϕA(p, η, ϕ)Φ(p, ϕ) , (14)

where η = (η0, η1, η2, η3) ∈ R
1,3 is the set of auxiliary variables. The

kernel A(p, η, ϕ) plays the role of the Wigner operator, which is an
infinite-dimensional analogue of A(p) from (4).
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In the kernel A(p, η, ϕ) the variables η and ϕ plays the role of the
SL(2,C)-type and ISO(2)-type continues indices.
Let the relativistic field Ψ(p, η) given in (14) be transformed under the
action of the Lorentz group in the standard way:

Ψ′(p, η) = [U(A)Ψ](p, η) = Ψ(Λ−1p,Λ−1η) , (15)

where the matrices A and Λ are related by standard way.
Knowing the explicit form of the unitary Lorentz transformation (13) of
WF Φ(p, ϕ) and the corresponding transformation (15) of the field
Ψ(p, η), we find the equations that determine the kernel A(p, η, ϕ) of
the Wigner operator.
As a result we obtain the following equation for the kernel A(p, η, ϕ):

A(Λ−1p,Λ−1η, ϕ) = e
−i~bA,Λ−1p

~tϕ+θ
A,Λ−1pA(p, η, ϕ+ θA,Λ−1p) . (16)

24 / 35



1. Non-singular solution
The expression for the kernel A(p, η, ϕ) is given by

A(p, η, ϕ) = e iµη·ε(1)(ϕ)/(η·p) f (η · η, η · p) , (17)

where we introduced the mass dimensional constant

µ := Eρ , (18)

f ((η)2, η · p) is an arbitrary function, and we also introduced two
additional 4-vectors

o
ε(1)(ϕ) :=

o
ε(1) cosϕ− o

ε(2) sinϕ , o
ε(2)(ϕ) :=

o
ε(1) sinϕ+

o
ε(2) cosϕ ,

(19)
that are SO(2)-transformations of

(
o
ε(1))ν = (0,1,0,0) , (

o
ε(2))ν = (0,0,1,0) . (20)

As a result, one obtains the relativistic field

Ψ(p, η) =

2π∫

0

dϕeiµη·ε(1)(ϕ)/(η·p) f (η · η, η · p)Φ(p, ϕ) . (21)
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2. Singular solution

A(p, η, ϕ) = δ(η · p) δ(η · ε(2)(ϕ))eiµ η·ε/(η·ε(1)(ϕ)) f (η · ε(1)(ϕ)) , (22)

where we have introduced the vector

ε = Λ(A(p))
o
ε . (23)

The vector (23) is light-like and transverse to the vectors ε(1)(ϕ),
ε(2)(ϕ):

ε · ε = 0 , ε · ε(1)(ϕ) = ε · ε(2)(ϕ) = 0 . (24)

Moreover, it obeys the condition ε · p = 1.
Expression (22) coincides with the generalized Wigner operator found
in [P. Schuster, N. Toro, JHEP 09 (2013) 104, arXiv:1302.1198[hep-th]; JHEP 09 (2013)

105, arXiv:1302.1577[hep-th]].
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The equation of motion of the field Ψ(p, η) are

(η · p)Ψ(p, η) = 0 . (25)
[

i
√

−(η · η) (p · ∂
∂η

) + µ

]

Ψ(p, η) = 0 . (26)

Additional condition f (η · ε(1)(ϕ)) = δ(η · ε(1)(ϕ)− 1) , fixing the function
f (η · ε(1)(ϕ)), leads to the equation

[
(η · η) + 1

]
Ψ(p, η) = 0 (27)

As a result, the equation (26) becomes:
[

i (p · ∂
∂η

) + µ

]

Ψ(p, η) = 0 . (28)

Together with the massless condition p2 Ψ(p, η) = 0, the equations
(25), (27), (28) are the Bargmann-Wigner equations for infinite spin
fields depending on an additional vector variable η. From these eqs.
we have Ŵ 2Ψ(p, η) = −µ2Ψ(p, η).
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the field Ψ(p,u, ū) is found from the Wigner wave function Φ(p, ϕ) in
the form

Ψ(p,u, ū) =

2π∫

0

dϕA(p,u, ū, ϕ)Φ(p, ϕ) , (29)

where the generalized Wigner operator A(p,u, ū, ϕ) maps a function
of ϕ into a function depending on uα, ūα̇.
In this case we have equations

(παuα −
√
µ)Ψ(π, π̄,u, ū) = 0 , (30)

(
ūα̇π̄

α̇ −√µ
)
Ψ(π, π̄,u, ū) = 0 . (31)

(

πβ
∂

∂uβ
+ i
√
µ

)

Ψ(π, π̄,u, ū) = 0 , (32)
(

π̄β̇
∂

∂ūβ̇
+ i
√
µ

)

Ψ(π, π̄,u, ū) = 0 . (33)

Again from these eqs we deduce

Ŵ 2 Ψ(p,u, ū) = −µ2 Ψ(p,u, ū) , (34)
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Helicity representations
Fourier expansion of Φ(p, ϕ):

Φ(p, ϕ) =
∞∑

n=−∞
Φn(p)einϕ . (35)

and the representation of SL(2,C) becomes

[U(A)Φ]n(p) =
∞∑

m=−∞
Dnm(θA,Λ−1p,

~bA,Λ−1p)Φm(Λ
−1p) , (36)

where Dnm is the matrix of the little group element h in the discrete
basis:

Dnm(θ,~b) = (−ieiβ)m−n e−imθJ(m−n)(bρ) , (37)

the β,b ∈ R are the polar coordinates of ~b = b (cos β, sin β) and
J(n)(x) are the Bessel functions of integer order. In the case of ρ→ 0
we have Jn−m(0) = δnm and the matrix element (37) is written as

Dnm(θ,~b) = δnme−inθ , (38)
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I.e. the matrix D(θ,~b) becomes diagonal and the transformation (36) is
written as

[U(A)Φ]n(p) = e−inθ Φn(Λ
−1p) . (39)

The one-to-one correspondence of the relativistic fields Ψ(p, η) and the
Wigner wave functions is given by the integral transform

Ψ(p, η) =

2π∫

0

dϕA(p, η, ϕ)Φ(p, ϕ) , (40)

where A(p, η, ϕ) – the generalized Wigner operator. In the discrete
basis, the WF Φn(p) and the local fields Ψ(p, η) are related as

Ψ(p, η) =
∞∑

n=−∞
A(p, η,n)Φn(p) , (41)

where the kernel A(p, η,n) of the generalized Wigner operator is the
Fourier component of A(p, η, ϕ):

A(p, η,n) =
2π∫

0

dϕA(p, η, ϕ)einϕ . (42)
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Solving eqs for the kernel A(p, η,n), we find the explicit form of the
generalized Wigner operator of helicity states for an arbitrary
4-momentum:

A(p, η,n) =







δ(η · p) (ε(+) · η)n with n > 0 ,

δ(η · p) (ε(−) · η)−n with n < 0 ,
(43)

where the 4-polarization vectors ε(±) are used.
We use the kernel of the generalized Wigner operator (43) and define
a relativistic field in the form

Ψn(p, η) = δ(η · p)Fn(p, η) , (44)

where

Fn(p, η) = F (+)

n (p, η) + F (−)

n (p, η) , F (±)

n (p, η) = (ε(±) · η)n Φ±n(p) .
(45)

The component fields F (+)

n (p, η) and F (−)

n (p, η) describe states with
positive and negative helicities λ = n and λ = −n.
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The explicit form of (45) reproduces the eqs for the fields Fn(p, η):

p2 Fn(p, η) = 0 , (46)
(

p · ∂
∂η

)

Fn(p, η) = 0 , (47)

(
∂

∂η
· ∂
∂η

)

Fn(p, η) = 0 , (48)

(

η · ∂
∂η

)

Fn(p, η) = n Fn(p, η) . (49)

The last equation determines the degree of homogeneity for the field
Fn(p, η) in the variables ηµ. In addition, the presence in the definition
of Ψn(p, η) of the field Fn(p, η) together with the δ-function δ(η · p)
leads to the following equivalence relation:

Fn(p, η) ∼ Fn(p, η) + (p · η) ǫn−1(p, η) , (50)

where the functions ǫn−1(p, η) satisfy equations (78) – (81).
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Relation (50) is essentially a gauge transformation with parameters
ǫn−1(p, η) and, therefore, the field Fn(p, η) is a gauge field.
The standard tensor description of gauge fields is obtained after
explicit selecting the polynomial dependence in η of the field Fn(p, η):

Fn(p, η) = ηµ1 . . . ηµn fµ1...µn(p) (51)

and transferring to the coordinate representation. The corresponding
coordinate tensor field fµ1...µn(x) is automatically totally symmetric
fµ1...µn(x) = f(µ1...µn)(x) and, thanks to (46)-(48), obeys the equations

�fµ1...µn(x) = 0 , ∂µ1 fµ1...µn(x) = 0 , ηµ1µ2 fµ1µ2...µn(x) = 0 .
(52)

In addition, the equivalence relation (50) means that the fields
fµ1...µn(x) are defined up to the gauge transformations:

δfµ1µ2...µn(x) = ∂(µ1
ǫµ2...µn)(x) . (53)

Equations (52) and gauge symmetry (53) are standard conditions that
define free massless higher spin fields.
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In the case of zero helicity, the use of additional variables ηµ is not
required. In this case, the relativistic field coincides with the Wigner
wave function Ψ0(p) = Φ0(p), which is not a gauge field, and obeys
only the Klein-Gordon equation in the momentum representation:
p2Ψ0(p) = 0.
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Summary and outlook
1.) In this report, on the basis of unitary representations of the covering group
ISL(2,C) of the Poincaré group, we have constructed explicit solutions of the
wave equations for free massive particles of arbitrary spin j (the
Dirac-Pauli-Fierz equations).Then we proposed the method for decomposing
of these solutions into a sum over independent components corresponding to
different polarizations.
2.) The most interesting examples corresponding to spins j = 1/2, 1, 3/2 and
j = 2 were discussed in detail in
[A.P.I., M.A.Podoinitsyn, Nucl. Phys. B929 (2018) 452].
3.) We have to stress that the massless case can also be considered in a
similar manner. Just as in the massive case, the spin-tensor wave functions
of free massless particles with arbitrary helicity are constructed from the
vectors of spaces of the unitary massless Wigner representations for the
covering group ISL(2,C) of the Poincaré group.
4.) In the massless case the corresponding spin-tensor wave functions satisfy
the Penrose equations (these equations for fields of massless particles were
formulated by Penrose in the coordinate representation, instead of the
Dirac-Pauli-Fierz equations. It is remarkable that instead of the two-spinor
formalism, which is suitable for the massive case, we arrive in the massless
case at the twistor formalism.
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