

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

21st Lomonosov Conference on Elementary Particle Physics

Faculty of Physics, MSU, Moscow, Russia

Dmitry Gorbunov (INR)

Testing vMSM

Widely accepted statements

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe

Widely accepted statements

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe

Widely accepted statements

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe
- New Heavy particle contribution to the Higgs boson mass lifts it up but miraculously m_h ~ E_{EW}

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Three Portals to the hidden World

Renormalizable interaction including SM field and new (hypothetical) fields singlets with respect to the SM gauge group

Attractive feature:

couplings are insensitive to energy in c.m.f., hence low energy experiments (intensity frontier) are favorable

• Scalar portal: SM Higgs doublet *H* and hidden scalar *S*

the simplest dark matter

$$\mathscr{L}_{\mathsf{scalar portal}} = -\beta H^{\dagger} H S^{\dagger} S - \mu H^{\dagger} H S$$

• Spinor portal: SM lepton doublet L, Higgs congugate field $\tilde{H} = \varepsilon H^*$ and hidden fermion N sterile neutrino !!

$$\mathscr{L}_{\text{spinor portal}} = -y\overline{L}\widetilde{H}N$$

 Vector portal: SM gauge field of U(1)_Y and gauge hidden field of abelian group U(1)' hidden photon

$$\mathscr{L}_{\text{vector portal}} = -\frac{\varepsilon}{2} B^{U(1)_{Y}}_{\mu\nu} B^{U(1)'}_{\mu\nu}$$

Dmitry Gorbunov (INR)

Testing vMSM

Dmitry Gorbunov (INR)

Testing vMSM

X

Standard Model + GR : Major Problems

Gauge and Higgs fields (interactions): γ , W^{\pm} , Z, g, G, and hThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes all experiments dealing with
 - electroweak and strong interactions (anomalies: g-2, B-physics, ...)
- Does not describe (PHENO)
 - Neutrino oscillations (and anomalies...)
 - Dark matter (Ω_{DM})
 - Baryon asymmetry (Ω_B)
 - Why the Universe is flat and homogeneous?
 - Where did the matter perturbations come from?

(THEORY)

- Dark energy (Ω_Λ)
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity
- Quantization of electric charge
- Why 3 generations?
- Why $Y_e \ll Y_\mu \ll .. \ll Y_t$

船

Neutrino oscillations: masses and mixing angles

Solar 2×2 "subsector"

Atmospheric 2×2 "subsector"

<code>http://hitoshi.berkeley.edu/neutrino/</code> $m_{sol}^2\approx 7.5\times 10^{-5}\,eV^2$

 $m_{\rm atm}^2\approx 2.5\times 10^{-3}\,{\rm eV}^2$

DAYA-BAY, RENO, T2K: $\sin^2 2\theta_{13} \approx 0.08$

Physics behind the neutrino oscillations is still elusive

Direct searches for m_v : cut in *e*-spectrum

 $extsf{T}
ightarrow \ ^3 extsf{He} \ + e + ar{v}_e$ $(pnn)
ightarrow (ppn) + e + ar{v}_e$

INR RAS, 1990-2000 years: $m_{ar{v}_e} \lesssim 2 \,\mathrm{eV}$

Mainz, 2000... :

 $m_{ar{v}_e} \lesssim 2\,\mathrm{eV}$

limits from KATRIN (2022)

 $m_{ar{v}_e} \lesssim 0.8 \, \mathrm{eV}$

similarly: $m_{\bar{v}_e} \lesssim 17 \text{ keV}$, $m_{\bar{v}_e} \lesssim 17 \text{ MeV}$

Dmitry Gorbunov (INR)

Testing vMSM

Cosmological limits: sub-eV scale... 13 years ago!!

Physics behind the neutrino oscillations is still elusive

- nature of neutrino mass (Dirac vs Majorana)
- neutrino mass hierarchy
- CP-violation
- may be relevant for the matter-antimatter asymmetry
- neutrino anomalies are just anomalies

Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile:new fermions uncharged under the SM gauge groupneutrino:explain observed oscillations by mixing with SM (active)neutrinos

Attractive features:

- possible to achieve within renormalizable theory
- only N = 2 Majorana neutrinos needed
- baryon asymmetry via leptogenesis
- dark matter (with $N \ge 3$ at least)
- light(?) sterile neutrinos might be responsible for neutrino anomalies...?

Disappointing feature:

Major part of parameter space is UNTESTABLE

Dmitry Gorbunov (INR)

Testing vMSM

Dmitry Gorbunov (INR)

ЯN ИR

Seesaw mechanism: $M_N \gg 1 \text{ eV}$ spinor portal

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}i\partial N - f\overline{L}_{e}^{c}\widetilde{H}N - \frac{M_{N}}{2}\overline{N}^{c}N + \text{h.c.}$$

Higgs gains $\langle H \rangle = v / \sqrt{2}$ and then

$$\mathscr{V}_{N} = \frac{1}{2} \left(\overline{v}_{e}, \overline{N}^{c} \right) \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{f}{\sqrt{2}} & M_{N} \end{pmatrix} \begin{pmatrix} v_{e} \\ N \end{pmatrix} + \text{h.c.}$$

For a hierarchy $M_N \gg M^D = v \frac{f}{\sqrt{2}}$ we have

flavor state $v_e = Uv_1 + \theta N$ with $U \approx 1$ and

active-sterile mixing:
$$\theta = \frac{M^D}{M_N} = \frac{v f}{2M_N} \ll 1$$

and mass eigenvalues

$$\approx M_N$$
 and $-m_{active} = \theta^2 M_N \ll M_N$

Dmitry Gorbunov (INR)

Testing vMSM

Violation of L, C and CP symmetries

$$\mathscr{L}_N = \overline{N}i\partial N - f\overline{L}_e^c \widetilde{H}N - \frac{M_N}{2}\overline{N}^c N + \text{h.c.}$$

- f = 0 \longrightarrow free fermion, no need to call 'sterile'
- $M_N = 0 \longrightarrow N$ and v form pure Dirac neutrino, the most boring case, worth than we have with the Higgs boson one may refuse to call it 'new physics'
- $f \neq 0$, $M_N \neq 0 \longrightarrow$ introduces new massive parameter, violates lepton symmetry *L* (and *C*- and *CP*-symmetry with several *N*'s)

Sterile neutrino: a vast region of mass

Within the seesaw paradigm, as far as

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

Any set (mass scale M_N , Yukawa coupling f) is viable

And with special tunning or symmetry larger (but not smaller) mixing 3 sterile neutrinos is viable

$$\hat{m}_a \sim \hat{f}^T rac{1}{\hat{M}_N} \hat{f} v^2$$

Dmitry Gorbunov (INR)

Testing vMSM

Sterile neutrino mass scale: $\hat{M}_v = -v^2 \hat{f}^T \hat{M}_N^{-1} \hat{f}$

NB: With fine tuning in \hat{M}_N and \hat{f} we can get a hierarchy in sterile neutrino masses, and 1 keV and even 1 eV sterile neutrinos

Dmitry Gorbunov (INR)

ä

Sterile neutrino: well-motivated keV-mass Dark Matter

• massive fermions giving mass to active neutrino through mixing (seesaw)

$$m_a \sim \frac{f^2 v^2}{M_N^2} M_N \sim \theta^2 M_N$$

• unstable, $N \rightarrow vvv$ is always open but exceeding the age of the Universe if

(applicable for $M_N < M_W$)

$$heta^2 < 1.5 imes 10^{-7} \left(rac{50 \, \mathrm{keV}}{M_N}
ight)^5$$

• with seesaw constraint $m_a \sim \theta^2 M_N$

$$\tau_{N \rightarrow 3\nu} \sim 1/\left(G_F^2 M_N^5 \theta_{\alpha N}^2\right) \sim 1/\left(G_F^2 M_N^4 m_\nu\right) \sim 10^{11} \, \text{yr} \left(10 \, \text{keV}/M_N\right)^4$$

Generation of lepton asymmetry with *v*MSM

Sakharov's condition of a successful baryogenesis

- B, L-violation
- C-, CP-violation
- \bullet departure from thermal equilibrium Oscillations in primordial plasma to get $\sim 10^{-9}$ before EW transition

generation of higher lepton asymmetry (upto 10^{-3} later)

Degeneracy for Leptogenesis

2008.13771

ä

Sterile neutrino: indirect searches

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

• unstable, but exceeding the age of the Universe if

$$\frac{\theta^2}{3\times 10^{-3}} < \left(\frac{10\,\mathrm{keV}}{M_N}\right)^5$$

 DM sterile neutrinos can be searched at X-ray telescopes because of two-body radiative decay
 give limits in absence of the feature

a narrow line $(\delta E_{\gamma}/E_{\gamma} \sim v \sim 10^{-3})$ at photon frequency $E_{\gamma} = M_N/2$ $\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_M}\right)^4$

Production in oscillations

$$\frac{\partial}{\partial t} f_{s}(t,\mathbf{p}) - H\mathbf{p} \frac{\partial}{\partial \mathbf{p}} f_{s}(t,\mathbf{p}) = \frac{1}{2} \Gamma_{\alpha} P(v_{\alpha} \to v_{s}) f_{\alpha}(t,\mathbf{p})$$

 $\Gamma_{\alpha} \propto G_F^2 T^4 E$ is the weak interaction rate in plasma

$$P(v_{\alpha} \rightarrow v_{s}) = \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right),$$

$$t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}},$$

$$\sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}}$$

sign of the effective plasma potential matters:

 $V_{\alpha\alpha} < 0 \implies$ mixing gets suppressed $V_{\alpha\alpha} > 0 \implies$ amplification via resonance

DM from oscillations:

 $(\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{vac})^2$

 $V_{lpha lpha} \sim - \# G_F^2 T^4 E$

resonant production in the lepton asymmetric

 $V_{\alpha\alpha} \sim + \# G_F T^2 \mu_L$

1601 07553

non-resonant:

plasma

(DW & ShF)

Dmitry Gorbunov (INR)

BAU-DM relation?

 $\ldots \Omega_B \sim \Omega_{DM}$

AN AN

... present searches: NuSTAR

2207.04572

Dmitry Gorbunov (INR)

eROSITA (0.2-10 keV), ART-XC (4-30 keV)

Seesaw type I mechanism: $M_N \gg m_{active}$

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

where $I = 1, 2, 3$ and $\alpha = e, \mu, \tau$ $\widetilde{H}_{a} = \varepsilon_{ab} H_{b}^{*}$

When Higgs gains $\langle H \rangle = v/\sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = v \frac{f_{\alpha l}}{\sqrt{2}} \overline{v}_{\alpha} N_{l} + \frac{M_{N_{l}}}{2} \overline{N}_{l}^{c} N_{l} + \text{h.c.} = \frac{1}{2} \left(\overline{v}_{\alpha}, \overline{N}_{l}^{c} \right) \begin{pmatrix} 0 & v \frac{\hat{f}}{\sqrt{2}} \\ v \frac{\hat{f}^{T}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} \left(v_{\alpha}^{c}, N_{l} \right)^{T} + \text{h.c.}$$

Then for $M_N \gg \hat{M}_D = v \frac{\hat{t}}{\sqrt{2}}$ we find the eigenvalues:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -\hat{M}_D \frac{1}{\hat{M}_N} \hat{M}_D^T \propto f^2 \frac{v^2}{M_N} \ll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i}v_i + \theta_{\alpha I}N_I$

active-active mixing: (PMNS-matrix U) $U^T \hat{M}^V U = diag(m_1, m_2, m_3)$

active-sterile mixing:
$$\theta_{\alpha l} = \frac{M_{D_{\alpha l}}}{M_l} \propto \hat{f} \frac{v}{M_N} \ll 1$$

28.08.2023, MSU 29/42

Dmitry Gorbunov (INR)

Testing vMSM

M N

Sterile neutrinos: production and decays

Interaction via neutral and charged weak hadronic currents

Fixed target and similar

However for the feebly coupled light particle best place to show up is the intensity frontier fixed target experiment

Variations and specifics

- dedicated (e.g. NA64) or working as by-product (e.g. T2K)
- thin target (e.g. T2K) or dump (e.g. NA64)
- decays or hits as the signature
- production by cosmic rays

```
• .
```

mixing with v_e

2102.12143

Dmitry Gorbunov (INR)

mixing with v_{μ}

2102.12143

Dmitry Gorbunov (INR)

mixing with v_{τ}

2102.12143

Dmitry Gorbunov (INR)

ä

Summary

- vMSM is minimalistic SM extension (3 majorana fermions) capable of explaining neutrino oscillations baryon asymmetry of the Universe dark matter phenomenon
- Nicely testable with present experimental technique
- Can be fully explored with indirect searches (at X-ray telescopes) for sterile neutrino dark matter ...
- We are waiting just for... discovery !!

Backup slides

Anomalies with matter structures at small scales

Core-cusp problem

Dark Matter density profiles in the centers of simulated halos are cusped while in observed dwarf galaxies are cored

• Lack of dwarf galaxies

Matter perturbations of almost flat spectrum produce flat halo mass spectrum low abundance of small galaxies

Too-big-To-fail problem

There must be galaxies heavy enough to keep baryons inside Milky Way hosts only two such galaxies

WDM, SIDM, Fuzzy DM etc: to suppress structures at small scales

Cusps in simulations

2207.05082

Dmitry Gorbunov (INR)

NN

Core vs cusp in a galaxy...

2203.00694

Dmitry Gorbunov (INR)

Testing vMSM

28.08.2023, MSU 41/42

2304.06742

瀫

CDM Problems

CDM Problems

Dmitry Gorbunov (INR)