

Searches for exotic physics in the NOvA experiment

Alexander Antoshkin (on behalf of the NOvA Collaboration)

Joint Institute for Nuclear Research, Dubna

The 21th international Lomonosov conference on elementary particle physics, Moscow (Russia), 24/08-30/08/2023

NuMI Off-axis V_e Appearance Experiment NOvA VINOS The NOvA Experiment Fermilat We produce a beam of mostly V_{μ} Alexander Antoshkin — Exotic physics @ NOvA st Lomonosov, Aug-28 2

The NOvA Detectors

- Near detector
- 100 m underground
- I km away from the accelerator, weight 300 t
- measure flux composition before oscillations
- ND data used for prediction in FD (extrapolation procedure)

- Far detector
- On the Earth's surface
- 810 km away from the accelerator, weight 14 kt
- measure neutrino flux after oscillations
- extrapolation systematics
- FD functionally identical to ND

The NOvA Detectors

- PVC extrusion filled with a Liquid Scintillator
- mineral oil + 5% pseudocumene and some additional dopants
- * Read out via WLS fiber to APD
- → FD has \approx 344,000 channels

Alexander Antoshkin — Exotic physics @ NOvA

3.87 cm

Layered planes provide 3D information

Plane of vertical cells

Plane of horizontal cells

Scintillator cell with looped WLS Fiber.

15.6m

3.87_{cm}

6.0cm

NOvA Data NuMI

Beam trigger structure:
 550 μs window, NuMI
 neutrinos arrive in 10 μs
 window starting at 218 μs

NOvA Live Event Display Web-page

«Exotic» physics

- * Non *v*-oscillation and non *v*-cross-section analyses are called «Exotic» ones.
- * The mass of the detectors («target» part):
 - 14 ktons for the far detector.
 - 220 tons for the near detector.
- * The detector locations:
 - FD is located on the surface.
 - ND is 100 m underground.
- Allow study of wide Astrophysical program beyond neutrino oscillation and neutrino cross-section measurements.
- * Search for / detection of various signals from Space and the Earth's environment:
 - supernova.
 - magnetic monopole.
 - atmospheric muons and neutrinos.
 - dark matter.
 - potential signals in coincidence with the LIGO/Virgo gravitational wave events.

Alexander Antoshkin — Exotic physics @ NOvA

6

Data Driven Triggers

- * Data rate including \approx 100 kHz atmospheric muons is 1.2 GB/s.
- * The beam spill data is selected by the time window.
- «Exotic» physics studies require specific data selection, based on its own online reconstruction algorithm.
- Detector data are formed in 5ms time slices (milliblocks) and distributed to nodes for storage in a circular buffer
 - 170 buffer nodes on Far Detector: 1350s
 - 14 buffer nodes on Near Detector: 1900s
- Milliblocks are processed in parallel DDT processes on buffer nodes (13 DDTs/node).
- * DDT process performs reconstruction and selection, searching for the specific signature. If the signature is found, the trigger signal is sent.
- * GlobalTrigger node receives all the the trigger signals and orders data to be saved to disk for future offline analysis.

«Exotic» Analyses

Alexander Antoshkin — Exotic physics @ NOvA

Cosmic Ray Studies: Seasonal variation

- NOvA has published a study of the seasonal variation of cosmic multimuons in the ND (which is 100m underground) [Phys. Rev. D 99, 122004 (2019)]. It confirmed the MINOS observation that the rate of such events underground is unexpectedly higher in the winter.
- A run through 2025(6) provides an additional 8 annual cycles, which may or may not be enough to disentangle the relevant effects. Each additional year will provide valuable information.
- * From MC, we found the winter maximum for multimuons is a geometry effect – they come from a higher altitude in the summer, and some then miss the detector. This is consistent with all our observations, & was suggested to us by the DÉCOR group at Moscow State University.

Cosmic Ray Studies: High energy muons

* A project has begun to study rare high energy muons in detail using NOvA's fine-grained tracking abilities, testing a spectrum-measuring technique proposed in R.P. Kokoulin and A.A. Petrukhin, "Theory of the pair meter for high-energy muon measurements," <u>Nucl. Instrum. Meth. A 263, 468–479 (1988)</u>.

Alexander Antoshkin — Exotic physics @ NOvA

10

Cosmic Ray Studies: Ultra-high energy showers

* Started exploring distribution of shower origins on the sky. **CORSIKA**

21st Lomonosov, Aug-28

xz-projection

Alexander Antoshkin — Exotic physics @ NOvA

Supernovae

- * NOvA is the largest carbon-based supernova detector currently operating.
- * In the event of a **Galactic supernova**, it will provide invaluable data which, in combination with detectors using other target materials, will constrain the flavor content of the supernova burst.
- The FD has better supernova capabilities than the ND but ND's small mass is compensated by its low background so the ND is still quite good for this analysis.
- NOvA can both selftrigger on a supernova burst, if it is within 7 kpc (13 kpc) for a 9.6 (27) solar mass star [JCAP10(2020)014], and be triggered by alerts from <u>SNEWS</u>.
- Given the estimated Galactic supernova rate of 3 per century, there is a 15% probability that NOvA observes a supernova burst through 2025(6), with the probability increasing linearly with each additional year.

Gravitational Wave Coincidence

* NOvA triggers on gravitational wave events observed by LIGO/Virgo as part of its multimessenger astronomy program [Phys. Rev. D 101, 112006 (2020), Phys. Rev. D 104, 063024 (2021)]. Our primary observable is a possible flux of supernova-like neutrinos. This could be from an actual supernova, or it could be from an exotic source. We are also sensitive to GeV neutrinos and other similar activity. Gravitational wave astronomy is still a nascent field and there may be surprises in the near future.

Name	ND	FD	$\mathrm{SN}_{27\odot}$	$SN_{9.6\odot}$	Name	ND	FD	$\mathrm{SN}_{27\odot}$	$\mathrm{SN}_{9.6\odot}$
GW150914	Untriggered	Bad	_	_	GW190728_064510	$45.0\mathrm{s}$	$29.6\mathrm{s}$	3.2	5
GW151012	Untriggered	No data	_		GW190731_140936	Untriggered	Untriggered	210	400
GW151226	Untriggered	Untriggered	110	190	GW190803_022701	Untriggered	Untriggered	140	230
GW170104	Untriggered	Untriggered	300	500	GW190814	$45.0\mathrm{s}$	Untriggered	14	22
GW170608	Untriggered	Untriggered	400	700	GW190828_063405	$45.0\mathrm{s}$	$18.1\mathrm{s}$	6	10
GW170729	Untriggered	Untriggered	240	400	GW190828_065509	$45.0\mathrm{s}$	Untriggered	16	21
GW170809	Untriggered	Untriggered	110	190	S190901ap	$45.0\mathrm{s}$	$45.0\mathrm{s}$	3.1	6
GW170814	Untriggered	Untriggered	120	200	GW190909_114149	Untriggered	Untriggered	110	190
GW170817	Untriggered	Untriggered	110	190	S190910d	$45.0\mathrm{s}$	$45.0\mathrm{s}$	4	7
GW170818	Untriggered	Untriggered	180	330	S190910h	$45.0\mathrm{s}$	$45.0\mathrm{s}$	2.7	5
GW170823	Untriggered	Untriggered	260	500	GW190910_112807	Untriggered	Untriggered	120	190
$GW190408_{181802}$	No data	No data	_	_	GW190915_235702	$45.0\mathrm{s}$	$45.0\mathrm{s}$	3.0	6
GW190412	Untriggered	Untriggered	170	280	S190923y	$45.0\mathrm{s}$	$45.0\mathrm{s}$	3.2	6
$GW190421_{213856}$	Untriggered	Untriggered	210	400	GW190924_021846	$45.0\mathrm{s}$	$45.0\mathrm{s}$	4	7
GW190425	Untriggered	Untriggered	120	190	GW190929_012149	Untriggered	Untriggered	200	340
$GW190426_{152155}$	$44.7\mathrm{s}$	Untriggered	13	19	GW190930_133541	$45.0\mathrm{s}$	$45.0\mathrm{s}$	7	13
$GW190503_{185404}$	Untriggered	Untriggered	150	270	S190930t	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	10
S190510g	Untriggered	Untriggered	170	280	S191105e	Untriggered	Untriggered	180	310
GW190512_180714	Untriggered	Untriggered	190	330	S191109d	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	8
$GW190513_{205428}$	$24.7\mathrm{s}$	Untriggered	14	20	S191129u	Untriggered	Untriggered	230	400
$GW190517_{055101}$	Untriggered	Untriggered	120	200	S191204r	Untriggered	Untriggered	300	500
GW190519_153544	Untriggered	Untriggered	140	250	S191205ah	$45.0\mathrm{s}$	$45.0\mathrm{s}$	2.7	6
GW190521	$45.0\mathrm{s}$	$45.0\mathrm{s}$	6	10	S191213g	$45.0\mathrm{s}$	$45.0\mathrm{s}$	3.4	7
$GW190521_074359$	Untriggered	Untriggered	170	280	S191215w	$45.0\mathrm{s}$	$45.0\mathrm{s}$	4	7
GW190602_175927	$45.0\mathrm{s}$	$45.0\mathrm{s}$	6	12	S191216ap	$45.0\mathrm{s}$	$29.5\mathrm{s}$	2.7	5
GW190630_185205	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	9	S191222n	$45.0\mathrm{s}$	$45.0\mathrm{s}$	4	7
GW190701_203306	$45.0\mathrm{s}$	$45.0\mathrm{s}$	6	11	S200105ae	Untriggered	Untriggered	230	400
GW190706_222641	$45.0\mathrm{s}$	17.5 s	2.5	5	S200112r	$45.0\mathrm{s}$	No data	16	23
GW190707_093326	Untriggered	Untriggered	220	400	S200114f	$45.0\mathrm{s}$	$45.0\mathrm{s}$	9	15
GW190413_052954	Untriggered	Untriggered	170	280	S200115j	$45.0\mathrm{s}$	$45.0\mathrm{s}$	2.1	4
GW190413_134308	Untriggered	Untriggered	160	270	S200128d	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	8
GW190424_180646	Untriggered	Untriggered	140	240	S200129m	$45.0\mathrm{s}$	$45.0\mathrm{s}$	3.2	6
GW190514_065416	Untriggered	Untriggered	280	500	S200208q	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	7
GW190527_092055	Untriggered	Untriggered	140	240	S200213t	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	10
GW190620_030421	Untriggered	Untriggered	270	400	S200219ac	Untriggered	Untriggered	190	300
GW190708_232457	Untriggered	Untriggered	150	270	S200224ca	$45.0\mathrm{s}$	No data	22	29
S190718y	$18.3\mathrm{s}$	Untriggered	17	23	S200225q	$45.0\mathrm{s}$	$45.0\mathrm{s}$	3.4	6
$GW190719_{215514}$	Untriggered	Bad			S200302c	$45.0\mathrm{s}$	$45.0\mathrm{s}$	4	8
$GW190720_000836$	$45.0\mathrm{s}$	$45.0\mathrm{s}$	4	6	S200311bg	$45.0\mathrm{s}$	No data	16	21
GW190727_060333	$45.0\mathrm{s}$	$45.0\mathrm{s}$	5	9	S200316bj	45.0 s	45.0 s	2.9	5

Alexander Antoshkin — Exotic physics @ NOvA

13

²¹st Lomonosov, Aug-28

Dark Matter

- Dark Matter may accumulate in the Sun and annihilate, producing GeV neutrinos. The signal is an upwards-going muon in the FD that points back to the Sun. Because of NOvA's low threshold and high segmentation, we may be more sensitive than Super-K for dark matter masses 1–4 GeV. The search is likely backgroundlimited by atmospheric neutrinos, so the sensitivity scales as the square root of exposure.
- It is also possible to search for dark matter produced in the NuMI beam using the NOvA ND. The signal would be an excess of very forward EM showers.

* The NOvA far detector (FD) is well suited for finding exotic particles due to its technical features. With a surface area of 4,000 m² and a location near the earth's surface, the 14 kt FD provides unique sensitivity to potential magnetic monopoles at various betas.

$\beta = \nu/c = velocity/speed of light$

Alexander Antoshkin — Exotic physics @ NOvA

- Why we are interested in monopoles? Quantum mechanical formulation of the magnetic monopoles was made by Paul Dirac in 1931. Searches for these particles are very important for several reasons:
 - Their existence would explain the quantization of electric charge.
 - It is possible to restore symmetry between electricity and magnetism by means their introduction into the theory of electromagnetism.
 - Magnetic monopole naturally appears in Grand Unified Theories (GUT).

* We separate the monopole search into two regimes: fast and slow. For the slow one the most distinctive aspect of the signal is the track speed and for the fast is extreme ionization. Both searches are expected to be background free, and so the flux limits scale linearly with exposure.

"Slow" monopoles with $\beta < 10^{-2}$ and less can be identified due to their linear tracks with long transit times through the detector.

- * Analysis algorithm:
 - Slow monopole trigger trigger looks at the live data and tries to identify straight lines of hits that would be consistent with a slow track.
 - Pre-selection The main goal is to decrease the resulting dataset size and event count by removing obvious background.
 - Reconstruction The Far Detector electronics collect data in two projected views separately, the xz- and yz-views. The y-direction is the vertical dimension while the z-direction points along the neutrino beam. Reconstruction starts by extracting twodimensional information from each view separately and then combines this 2D information into 3D objects known as monopole tracks.

- Monopole track requirements:
 - > 10 m length
 - Sensible r² for time vs. position

- β < 0.01
- No large gaps

- **Low** APD gain data:
 - Data events are shown as grey circles
 - Simulation for $\beta = 10^{-3}$ both as red squares and as a heat map
- Events should be inside dashed green areas to be considered monopole candidates

- * All collected data were divided into sub parts according to detector's photosensor **gain** or slow monopole trigger **settings**:
 - APD low gain data first 95 days dataset in the very beginning of FD operation. Was totally analyzed and published. [Phys. Rev. D 103, 012007 (2021)]
 - Further 4 high APD gain data periods were pre-selected.
 Pre-selection procedure is a powerful tool that helped to lower the size of final dataset (filtered) by more than 20 times.
 - Reconstruction algorithm was tested using Monte-Carlo simulation and FD usual activity. Final criteria are ready for filtered high APD gain dataset analysis.

* 13 years of data would give an estimated flux limit of 4×10⁻¹⁶ cm⁻²s⁻¹sr⁻¹ for monopoles with 3×10⁻⁴ < β < 0.8, matching or surpassing the MACRO and SLIM flux limits while covering a wider range of monopole masses.

Alexander Antoshkin — Exotic physics @ NOvA

Summary

- * <u>The NOvA experiment</u> allows us to investigate wide range of particle physics phenomena beyond neutrino oscillation and neutrino cross-section measurements.
- «Exotic» analyses help to modernize the NOvA subsystems: DAQ, Trigger, Detector simulation.
- * 7 paper already published and many analyses ongoing...
- Including slow magnetic monopole analysis:
 - Low gain APD dataset was analyzed and published.
 - High gain APD dataset was divided into 4 pieces according to trigger settings.
 - Pre-selection was made for the majority of the data. Pre-selection procedure reduced the final dataset by factor of ~ 20.
 - **Reconstruction cuts** were optimized using MC simulation and FD activity.
 - We are almost ready to move to the final step work with the filtered dataset.

Thank you for your attention!

Low vs High APD gain data

- * Low gain:
- * 95-day exposure
- Set mass limits in flux / speed space

- * High gain:
- * ~ 4000 days of exposure
- Majority of the data were pre-selected: significantly reduced the dataset size and required CPU time for further analysis
- * Reconstruction cuts are the same
- * Background free limits scale linearly with exposure