Adler function and Bjorken polarized sum rule: PT expansions in powers of $S U\left(N_{c}\right)$ QCD β-function, $\{\beta\}$-expansion in QCD WITHOUT extra gluion and the conformal symmetry limit

A. L. Kataev

Institute for Nuclear Research of the Academy of Sciences of Russia, Moscow
Dubna, 21
September 2016;
based on the work with G. Cvetic (Santa Maria U, Valpraiso,
Chile) Phys. Rev. D94 (2016) 014006 ; arXiV:1604.00509

Plan

- The QCD studied quantities and two forms of the generalized Crewther relations (Broadhurst, $\operatorname{Kataev}(93)$ Kataev,Mikhailov (12))
- The used form of the QCD expressions for the non-singlet parts of Adler D-function (and Bjorken polarized sum rule)
- The resulting expressions in the $\overline{M S}$-scheme
- The $\alpha_{s}^{4} \mathrm{QCD}$ expressions for the $\{\beta\}$-expanded coefficients (no gluino is needed)
■ Difference with α_{s}^{3} for the $\{\beta\}$-expansion in $\mathrm{QCD}+$ gluino (Mikhailov(07), KM(12)-KM(15))
- Conformal symmetry limit identities are the same
- Problems for further studies: theory (for sure)- experiment (hopefully)

The basic definitions

$$
\begin{gathered}
R_{e^{+} e^{-}}(s)=\left.\frac{1}{2 \pi i} \int_{-s-i \varepsilon}^{-s+i \varepsilon} \frac{\left.d_{R} D^{(} \sigma / \mu^{2} ; a_{s}\left(\mu^{2}\right)\right)}{\sigma} d \sigma\right|_{\mu^{2}=s} \\
D\left(a_{s}\left(Q^{2}\right)\right)=\left(\sum_{i} q_{i}^{2}\right) D^{n s}\left(a_{s}\left(Q^{2}\right)\right)+\left(\sum_{i} q_{i}\right)^{2} D^{s i}\left(a_{s}\left(Q^{2}\right)\right)
\end{gathered}
$$

The a_{s}^{4}-term evaluated Baikov, Chetyrkin, Kuhn (2010);

$$
\begin{gathered}
S^{B j p}\left(Q^{2}\right)=\int_{0}^{1}\left[g_{1}^{l p}\left(x, Q^{2}\right)-g_{1}^{l n}\left(x, Q^{2}\right)\right] d x= \\
\left.\frac{g_{A}}{6} C_{n s}^{B j p}\left(a_{s}\left(Q^{2}\right)\right)+\left(\sum_{i} q_{i}\right) c_{4}^{s i} a_{s}^{4}\left(Q^{2}\right)\right)
\end{gathered}
$$

The a_{s}^{4} term - BCK (2010)+ small si correction Larin (13)

The MS-scheme generalized Crewther relations

In the $\overline{M S}$-scheme the expansions read:

$$
\begin{aligned}
& D^{n s}\left(a_{s}\right)=1+d_{1} a_{s}+d_{2} a_{s}^{2}+d_{3} a_{s}^{3}+d_{4} a_{s}^{4} \\
& C_{n s}^{B j p}\left(a_{s}\right)=1+c_{1} a_{s}+c_{2} a_{s}^{2}+c_{3} a_{s}^{3}+c_{4} a_{s}^{4}
\end{aligned}
$$

The c_{1} and d_{1} depend from $C_{F}, d_{2}, c_{2}, d_{3}, c_{3}$ depend from the monomials in $C_{F}, C_{A}, T_{F} n_{f}, d_{4}, c_{4}$ contain the contributions from $d_{F}^{a b c d}, d_{A}^{a b c d}$, i.e. symmetric tensors of the generators in the fundamental and adjoined representations. The generalized Crewther relation in the $\overline{M S}$-scheme reads

$$
\begin{gathered}
D^{n s}\left(a_{s}\right) C_{n s}^{B j p}\left(a_{s}\right)=1+\Delta_{c s b}\left(a_{s}\right) \\
\Delta_{c s b}\left(a_{s}\right)=\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right) P\left(a_{s}\right)=\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right) \sum_{m \geq 1} K_{m} a_{s}^{m}
\end{gathered}
$$

At a_{s}^{3} discovered by Broadhurst, $\mathrm{K}(93)$, at a_{s}^{4} confirmed by BChKuhn (10); theoretical arguments in orders
Gabadadze,K(95);Crewther(97);Braun,Korchemsky,Muller(03)

The variant of the $\overline{M S}$-scheme generalized Crewther relation

The presented above $\overline{M S}$-scheme the CSB-term analytically known K_{1} is proportional to C_{F}, K_{2} contains $C_{F}^{2}, C_{F} C_{A}$ and $C_{F} T_{F} n_{f}, K_{3}$ contains $C_{F}^{3}, C_{F}^{2} C_{A}, C_{F} C_{A}^{2}, C_{F}^{2} T_{F} n_{f}, C_{F} C_{A} T_{F} n_{f}$ and $C_{F}\left(T_{F} n_{f}\right)^{2}$. However as shown by Kataev, Mikhailov (2012) to re-express it as (at least at the a_{s}^{4}-level)

$$
\begin{gathered}
\Delta_{c s b}\left(a_{s}\right)=\sum_{n \geq 1}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} P_{n}\left(a_{s}\right) \\
=\sum_{n \geq 1} \sum_{r \geq 1}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} P_{n}^{(r)}[k, m] C_{F}^{k} C_{A}^{m} a_{s}^{r} .
\end{gathered}
$$

Here $r=k+m$ with $k \geq 1$ and $m \geq 0, P_{n}^{(r)}[k, m]$ contain rational numbers and transcendental Riemann $\zeta_{2 l+1}$ numbers with $l \geq 1$. The $S U\left(N_{c}\right)$ monomials do not contain $T_{F} n_{f}$. In a_{s}^{3} analogy appears in studies of the quantity related to static potential in QCD Grozin, Henn, Korchemsky, Marquard (2016)

New representations for the $D^{n s}$

Whether expansion in powers of conformal anomaly $\beta\left(a_{s}\right) / a_{s}$, where $\beta\left(a_{s}\right)=-\sum_{j \geq 0} \beta_{j} a_{s}^{j+2}$ is valid for the $D^{n s}$? Cvetic,
Kataev (16): yes

$$
\begin{gathered}
D^{n s}\left(a_{s}\right)=1+\sum_{n=0}^{3}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} D_{n}\left(a_{s}\right) \\
D_{n}\left(a_{s}\right)=\sum_{r=1}^{4-n} a_{s}^{r} \sum_{k=1}^{r} D_{n}^{(r)}[k, r-k] C_{F}^{k} C_{A}^{r-k}+a_{s}^{4} \delta_{n 0} \times \\
\left(D_{0}^{(4)}[F, A] \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}+D_{0}^{(4)}[F, F] \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{d_{R}} n_{f}\right)
\end{gathered}
$$

Why not to subdivide this $a_{s}^{4} n_{f}$-dependent term as

$$
\delta_{n 0} D_{0}^{(4)}[F, F] n_{f}=\left(\delta_{n 0} \frac{11 C_{A}}{4 T_{F}} D_{0}^{(4)}[F, F]+\delta_{n 1} \frac{3}{T_{F}} D_{1}^{(4)}[F, F]\right)
$$

with $D_{0}^{(4)}[F, F]=D_{1}^{(4)}[F, F]$? This contradicts QED limit- there is no such $\delta_{n 1}$ contribution from light-by-light-type subgraph. using above presented representations and comparing them with the available analytical PT expansion for $D^{n s}\left(a_{s}\right)$ in $S U\left(N_{c}\right)$ up to a_{s}^{4} with all colour structures fixed we obtain complete system of 22 equations. Solving it we get the expressions of D_{0} (the polynomial prior $\left(\beta\left(a_{s}\right) / a_{s}\right)^{0}$) and $D_{1}-D_{3}$:

$$
\begin{gathered}
D_{0}\left(a_{s}\right)=\frac{3}{4} C_{F} a_{s}+\left[-\frac{3}{32} C_{F}^{2}+\frac{1}{16} C_{F} C_{A}\right] a_{s}^{2}+\left[-\frac{69}{128} C_{F}^{3}\right. \\
\left.\quad-\left(\frac{101}{256}-\frac{33}{16} \zeta_{3}\right) C_{F}^{2} C_{A}-\left(\frac{53}{192}+\frac{33}{16} \zeta_{3}\right) C_{F} C_{A}^{2}\right] a_{s}^{3} \\
+ \\
+\left(\frac{4157}{2048}+\frac{3}{8} \zeta_{3}\right) C_{F}^{4}-\left(\frac{3509}{1536}+\frac{73}{128} \zeta_{3}+\frac{165}{32} \zeta_{5}\right) C_{F}^{3} C_{A} \\
+\left(\frac{9181}{4608}+\frac{299}{128} \zeta_{3}+\frac{165}{64} \zeta_{5}\right) C_{F}^{2} C_{A}^{2}-\left(\frac{30863}{36864}+\frac{147}{128} \zeta_{3}-\frac{165}{64} \zeta_{5}\right) C_{F} C_{A}^{3} \\
\left.\left.+\left(\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}\right) \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}-\left(\frac{13}{16}+\zeta_{3}-\frac{5}{2} \zeta_{5}\right) \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{d_{R}} n_{f}\right)\right] a_{s}^{4}
\end{gathered}
$$

The expressions for $D_{1}-D_{3}$; in the $\overline{M S}$ (The results for $C_{0}\left(a_{s}\right)-C_{4}\left(a_{s}\right)$ were also obtained for the new representation of $\left.C_{n s}^{B j p}\left(a_{s}\right)\right)$

$$
\begin{gathered}
D_{1}\left(a_{s}\right)=\left(-\frac{33}{8}+3 \zeta_{3}\right) C_{F} a_{s}+\left[\left(\frac{111}{64}+12 \zeta_{3}-15 \zeta_{5}\right) C_{F}^{2}\right. \\
\left.-\left(\frac{83}{32}+\frac{5}{4} \zeta_{3}-\frac{5}{2} \zeta_{5}\right) C_{F} C_{A}\right] a_{s}^{2}+\left[\left(\frac{758}{128}+\frac{9}{16} \zeta_{3}-\frac{165}{2} \zeta_{5}+\frac{315}{4} \zeta_{7}\right) C_{F}^{3}\right. \\
\quad+\left(\frac{3737}{144}-\frac{3433}{64} \zeta_{3}+\frac{99}{4} \zeta_{3}^{2}+\frac{615}{16} \zeta_{5}-\frac{315}{8} \zeta_{7}\right) C_{F}^{2} C_{A} \\
\left.+\left(\frac{2695}{384}+\frac{1987}{64} \zeta_{3}-\frac{99}{4} \zeta_{3}^{2}-\frac{175}{32} \zeta_{5}+\frac{105}{16} \zeta_{7}\right) C_{F} C_{A}^{2}\right] a_{s}^{3}, \\
D_{2}\left(a_{s}\right)=\left(\frac{151}{6}-19 \zeta_{3}\right) C_{F} a_{s}+\left[\left(-\frac{4159}{384}-\frac{2997}{16} \zeta_{3}+27 \zeta_{3}^{2}\right.\right. \\
\left.\left.+\frac{375}{2} \zeta_{5}\right) C_{F}^{2}+\left(\frac{14615}{256}+\frac{39}{16} \zeta_{3}-\frac{9}{2} \zeta_{3}^{2}-\frac{185}{4} \zeta_{5}\right) C_{F} C_{A}\right] a_{s}^{2}, \\
D_{3}\left(a_{s}\right)=\left(-\frac{6131}{36}+\frac{203}{2} \zeta_{3}+45 \zeta_{5}\right) C_{F} a_{s} .
\end{gathered}
$$

The fixation of $\{\beta\}$-expanded coefficients for the $D^{n s}$ at the a_{s}^{4} level in $S U\left(N_{c}\right)$ without addition degrees of freedom (gluino)

Consider now the proposed by Mikhailov(07) $\{\beta\}$-expansion of PT coefficients for the Adler function:

$$
\begin{gathered}
d_{1}=d_{1}[0], \quad d_{2}=\beta_{0} d_{2}[1]+d_{2}[0] \\
d_{3}=\beta_{0}^{2} d_{3}[2]+\beta_{1} d_{3}[0,1]+\beta_{0} d_{3}[1]+d_{3}[0], \\
d_{4}=\beta_{0}^{3} d_{4}[3]+\beta_{1} \beta_{0} d_{4}[1,1]+\beta_{2} d_{4}[0,0,1] \\
+\beta_{0}^{2} d_{4}[2]+\beta_{1} d_{4}[0,1]+\beta_{0} d_{4}[1]+d_{4}[0]
\end{gathered}
$$

Without proposed by Kataev-Cvetic(17) application of the two-fold series expression in powers of the conformal anomaly and QCD coupling a_{s} it was possible to define the coefficients of the $\{\beta\}$-expressions for d_{i} and the similar expressions for the coefficients of Bjorken sum rule c_{i} at the a_{s}^{3} level only in $S U\left(N_{c}\right)+$ multiplets of gluino (Mikhailov (07), Kataev, Mikhailov (12-15)).

The $\{\beta\}$ expanded terms for $D^{n s}$ in $S U\left(N_{c}\right)$

We present these terms obtained in QCD in the $\overline{M S}$-scheme using the factorized representation, which is NOT proved, but does not contradict any theoretical results. They differ in part from obtained in QCD+gluino theory (Mikhailov (07))

$$
\begin{aligned}
& d_{1}[0]= \frac{3}{4} C_{F} d_{2}[0]=\left(-\frac{3}{32} C_{F}^{2}+\frac{1}{16} C_{F} C_{A}\right) d_{2}[1]=\left(\frac{33}{8}-3 \zeta_{3}\right) C_{F} \\
& d_{3}[0]=-\frac{69}{128} C_{F}^{3}-\left(\frac{101}{256}-\frac{33}{16} \zeta_{3}\right) C_{F}^{2} C_{A} \neq+\frac{\mathbf{7 1}}{\mathbf{6 4}} \mathbf{C}_{\mathbf{F}}^{\mathbf{2}} \mathbf{C}_{\mathbf{A}} \\
&-\left(\frac{53}{192}+\frac{33}{16} \zeta_{3}\right) C_{F} C_{A}^{2} \neq+\left(\frac{\mathbf{5 2 3}}{\mathbf{7 6 8}}-\frac{\mathbf{2 7}}{\mathbf{8}} \zeta_{\mathbf{3}}\right) \mathbf{C}_{\mathbf{F}} \mathbf{C}_{\mathbf{A}}^{\mathbf{2}} \\
& d_{3}[1]=\left(-\frac{111}{64}-12 \zeta_{3}+15 \zeta_{5}\right) C_{F}^{2} \neq\left(-\frac{\mathbf{2 7}}{\mathbf{8}}-\frac{\mathbf{3 9}}{\mathbf{4}} \zeta_{\mathbf{3}}+\underline{\mathbf{1 5} \zeta_{\mathbf{5}}}\right) \mathbf{C}_{\mathbf{F}}^{\mathbf{2}} \\
&+\left(\frac{83}{32}+\frac{5}{4} \zeta_{3}-\frac{5}{2} \zeta_{5}\right) C_{F} C_{A} \neq\left(-\frac{\mathbf{9}}{\mathbf{6 4}}+\mathbf{5} \zeta_{\mathbf{5}}-\frac{\mathbf{5}}{\mathbf{2}} \zeta_{\mathbf{5}}\right) \mathbf{C}_{\mathbf{F}} \mathbf{C}_{\mathbf{A}} \\
& d_{3}[0,1]=\left(\frac{33}{8}-3 \zeta_{3}\right) C_{F} \neq\left(\frac{\mathbf{1 0 1}}{\mathbf{1 6}}-\mathbf{6} \zeta_{\mathbf{3}}\right) \mathbf{C}_{\mathbf{F}} d_{3}[2]=\left(\frac{151}{6 \equiv}-19 \zeta_{3}\right) C_{F}=
\end{aligned}
$$

The $\{\beta\}$ expansion QCD expression for d_{4} and c_{4} were also obtained

To insure that this was done the $\overline{M S}$-expression for $d_{4}[0]$ is presented only.

$$
\begin{aligned}
& d_{4}[0]=\left[\left(\frac{4157}{2048}+\frac{3}{8} \zeta_{3}\right) C_{F}^{4}-\left(\frac{3509}{1536}+\frac{73}{128} \zeta_{3}+\frac{165}{32} \zeta_{5}\right) C_{F}^{3} C_{A}\right. \\
& +\left(\frac{9181}{4608}+\frac{299}{128} \zeta_{3}+\frac{165}{64} \zeta_{5}\right) C_{F}^{2} C_{A}^{2}-\left(\frac{30863}{36864}+\frac{147}{128} \zeta_{3}-\frac{165}{64} \zeta_{5}\right) C_{F} C_{A}^{3} \\
& +\left(\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}\right) \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}+\left(-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}\right) \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{d_{R}} n_{f}
\end{aligned}
$$

Note once more that $\left(d_{F}^{a b c d} d_{F}^{a b c d} / d_{R}\right) n_{f}$ term is not transformed to the QCD β_{0}-dependent structure, namely into $d_{4}[1]$, since in our basic aim is to have analogy with QED. In QED this gauge factor labels the contribution of the convergent light-by-light scattering insertion into photon vacuum polarization function and therefore in QED contribute to $d_{4}^{Q E D}$ [0]-term.

The cross-check of the studies and the conformal

 symmetry limit identitiesThe multiplication of analytical expressions for the new QCD representations for $D^{n s}\left(a_{s}\right)$ and $C_{n s}^{B j p}\left(a_{s}\right)$ at the a_{s}^{4}-level result in confirmation of the discovered by Kataev, Mikhailov (12) form of the $\overline{M S}$-scheme CSB expression in the generalized Crewther relation

$$
\begin{aligned}
& \Delta_{c s b}\left(a_{s}\right)=\sum_{n \geq 1}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} P_{n}\left(a_{s}\right) \\
= & \sum_{n \geq 1} \sum_{r \geq 1}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} P_{n}^{(r)}[k, m] C_{F}^{k} C_{A}^{m} a_{s}^{r}
\end{aligned}
$$

with the same analytical coefficients. The QCD extension of the Crewther relation, obtained in the conformal symmetry limit with $\beta\left(a_{s}\right) \rightarrow 0$ now has the following form

$$
\left(1+D_{0}\left(a_{s}\left(Q^{2}\right)\right) \times\left(1+C_{0}\left(a_{s}\left(Q^{2}\right)\right)=1\right.\right.
$$

Notice cancellation of $d_{F}^{a b c d} d_{A}^{a b c d} / d_{R}$ and $\left.d_{F}^{a b c d} d_{F}^{a b c d} / d_{R}\right) n_{f}$ a_{s}^{4}-terms. Extra indication of consistency of used

Model independent expressions

We study study the following from $\mathrm{KS}(15)$ and $\mathrm{KM}(15)$ links between the terms of $\{\beta\}$-expansion for $D^{n s}\left(a_{s}\right)$ and $C_{n s}^{B j p}\left(a_{s}\right)$, which follow from the CS limit of generalized Crewther relation:

$$
\begin{gathered}
c_{3}[0]+d_{3}[0]=2 d_{1} d_{2}[0]-d_{1}^{3}=-\frac{9}{16} C_{F}^{3}+\frac{3}{32} C_{F}^{2} C_{A}, \\
c_{4}[0]+d_{4}[0]=2 d_{1} d_{3}[0]-3 d_{1}^{2} d_{2}[0]+d_{2}[0]^{2}+d_{1}^{4}= \\
-\frac{333}{1024} C_{F}^{4}+\left(-\frac{363}{512}+\frac{99}{32} \zeta_{3}\right) C_{F}^{3} C_{A}-\left(\frac{105}{256}+\frac{99}{32} \zeta_{3}\right) C_{F}^{2} C_{A}^{2}, \\
c_{2}[1]+d_{2}[1]=c_{3}[0,1]+d_{3}[0,1]=c_{4}[0,0,1]+d_{4}[0,0,1] \\
=\left(\frac{21}{8}-3 \zeta_{3}\right) C_{F}, \\
c_{3}[1]+d_{3}[1]+d_{1}\left(c_{2}[1]-d_{2}[1]\right)=c_{4}[0,1]+d_{4}[0,1]+d_{1}\left(c_{3}[0,1]\right. \\
\left.-d_{3}[0,1]\right)=-\left(\frac{397}{96}+\frac{17}{2} \zeta_{3}-15 \zeta_{5}\right) C_{F}^{2}+\left(\frac{47}{48}-\zeta_{3}\right) C_{F} C_{A} .
\end{gathered}
$$

They are scheme independent and valid in QCD with and without oluino.

Conclusion: A lot of ideas- not a lot of answers

Theoretical conclusions:
■ In case of study of structure of PT series (say $\{\beta\}$-expansion partens and CS limit relations, which follow from generalized Crewther relation, it is possible to use either QCD or QCD+extra degrees of freedom

- In case we are interested in phenomenology of QCD gluionos are "artifacts". Better avoid them.
■ New two-fold series representations for $D^{n s}\left(a_{s}\right)$ and $C_{n s}^{B j p}\left(a_{s}\right)$ with ecat appearance of powers of conformal anomaly are proposed, They are true at a_{s}^{4}-level. Are they related to the generalized Crewther ?
- Is it possible to prove these QCD expressions or understand them better?

Continuation of possible studies

■ We have only two series for RG-invariant functions. No other examples - can we check this structure using existing results?

- Better understanding of the status of proposed by Brodsky et al PMC approach, links with other considerations and methods (say Cvetic,Valenzuela (2006); renormalon language
- Possible phenomenological applications-new studies of $e^{+} e^{-}$ data (there are extra points from B-factory), new resummed studies of polarized Bjorken sum rule data- JLAB??
- Where CS Breaking terms may also manifest themselves in theory and (who knows - future phenomenology, say study of formfactors of decays of light mesons ??)

Waiting for your comments or input, ladies and gentlemen!!

