Adler function and Bjorken polarized sum rule: PT expansions in powers of $SU(N_c)$ QCD β -function, $\{\beta\}$ -expansion in QCD WITHOUT extra gluion and the conformal symmetry limit

A. L. Kataev

Institute for Nuclear Research of the Academy of Sciences of Russia, Moscow

Dubna, 21 September 2016; based on the work with G. Cvetic (Santa Maria U, Valpraiso, Chile) Phys. Rev. D94 (2016) 014006 ; arXiV:1604.00509

(日) (四) (문) (문) (문) (문)

Plan

- The QCD studied quantities and two forms of the generalized Crewther relations (Broadhurst,Kataev(93)-Kataev,Mikhailov (12))
- The used form of the QCD expressions for the non-singlet parts of Adler *D*-function (and Bjorken polarized sum rule)
- The resulting expressions in the \overline{MS} -scheme
- The α_s^4 QCD expressions for the $\{\beta\}$ -expanded coefficients (no gluino is needed)
- Difference with α_s^3 for the { β }-expansion in QCD+ gluino (Mikhailov(07), KM(12)-KM(15))
- Conformal symmetry limit identities are the same
- Problems for further studies: theory (for sure)- experiment (hopefully)

The basic definitions

$$R_{e^+e^-}(s) = \frac{1}{2\pi i} \int_{-s-i\varepsilon}^{-s+i\varepsilon} \frac{d_R D(\sigma/\mu^2; a_s(\mu^2))}{\sigma} \, d\sigma \Big|_{\mu^2 = s}$$
$$D\left(a_s(Q^2)\right) = \left(\sum_i q_i^2\right) D^{ns}\left(a_s(Q^2)\right) + \left(\sum_i q_i\right)^2 D^{si}\left(a_s(Q^2)\right)$$

The a_s^4 -term evaluated Baikov, Chetyrkin, Kuhn (2010);

$$S^{Bjp}(Q^2) = \int_0^1 [g_1^{lp}(x, Q^2) - g_1^{ln}(x, Q^2)] dx = \frac{g_A}{6} C_{ns}^{Bjp}(a_s(Q^2)) + \left(\sum_i q_i\right) c_4^{si} a_s^4(Q^2))$$

≣ ૧૧૯

The a_s^4 term - BCK (2010) + small si correction Larin (13)

The MS-scheme generalized Crewther relations

In the \overline{MS} -scheme the expansions read:

$$D^{ns}(a_s) = 1 + d_1 a_s + d_2 a_s^2 + d_3 a_s^3 + d_4 a_s^4$$
$$C^{Bjp}_{ns}(a_s) = 1 + c_1 a_s + c_2 a_s^2 + c_3 a_s^3 + c_4 a_s^4$$

The c_1 and d_1 depend from C_F , d_2 , c_2 , d_3 , c_3 depend from the monomials in C_F , C_A , $T_F n_f$, d_4 , c_4 contain the contributions from d_F^{abcd} , d_A^{abcd} , i.e. symmetric tensors of the generators in the fundamental and adjoined representations. The generalized Crewther relation in the \overline{MS} -scheme reads

$$D^{ns}(a_s)C_{ns}^{Bjp}(a_s) = 1 + \Delta_{csb}(a_s)$$
$$\Delta_{csb}(a_s) = \left(\frac{\beta(a_s)}{a_s}\right)P(a_s) = \left(\frac{\beta(a_s)}{a_s}\right)\sum_{m\geq 1}K_m a_s^m$$

At a_s^3 discovered by Broadhurst, K(93), at a_s^4 confirmed by BChKuhn(10); **theoretical arguments** in orders Gabadadze, K(95); Crewther (97); Braun, Korchemsky, Muller (03)

The variant of the \overline{MS} -scheme generalized Crewther relation

The presented above \overline{MS} -scheme the CSB-term analytically known K_1 is proportional to C_F , K_2 contains C_F^2 , $C_F C_A$ and $C_F T_F n_f$, K_3 contains C_F^3 , $C_F^2 C_A$, $C_F C_A^2$, $C_F^2 T_F n_f$, $C_F C_A T_F n_f$ and $C_F (T_F n_f)^2$. However as shown by Kataev, Mikhailov (2012) to re-express it as (at least at the a_s^4 -level)

$$\Delta_{csb}(a_s) = \sum_{n \ge 1} \left(\frac{\beta(a_s)}{a_s}\right)^n P_n(a_s)$$
$$= \sum_{n \ge 1} \sum_{r \ge 1} \left(\frac{\beta(a_s)}{a_s}\right)^n P_n^{(r)}[k,m] C_F^k C_A^m a_s^r$$

Here r = k + m with $k \ge 1$ and $m \ge 0$, $P_n^{(r)}[k, m]$ contain rational numbers and transcendental Riemann ζ_{2l+1} numbers with $l \ge 1$. The $SU(N_c)$ monomials do not contain $T_F n_f$. In a_s^3 analogy appears in studies of the quantity related to static potential in QCD Grozin, Henn, Korchemsky, Marquard (2016)

New representations for the D^{ns}

Whether expansion in powers of conformal anomaly $\beta(a_s)/a_s$, where $\beta(a_s) = -\sum_{j\geq 0} \beta_j a_s^{j+2}$ is valid for the D^{ns} ? Cvetic, Kataev (16): yes

$$D^{ns}(a_s) = 1 + \sum_{n=0}^{3} \left(\frac{\beta(a_s)}{a_s}\right)^n D_n(a_s)$$

$$D_n(a_s) = \sum_{r=1}^{4-n} a_s^r \sum_{k=1}^r D_n^{(r)}[k, r-k] C_F^k C_A^{r-k} + a_s^4 \delta_{n0} \times \left(D_0^{(4)}[F, A] \frac{d_F^{abcd} d_A^{abcd}}{d_R} + D_0^{(4)}[F, F] \frac{d_F^{abcd} d_F^{abcd}}{d_R} n_f \right)$$

Why not to subdivide this $a_s^4 n_f$ -dependent term as

$$\delta_{n0} D_0^{(4)}[F,F] n_f = \left(\delta_{n0} \frac{11C_A}{4T_F} D_0^{(4)}[F,F] + \delta_{n1} \frac{3}{T_F} D_1^{(4)}[F,F] \right)$$

with $D_0^{(4)}[F,F] = D_1^{(4)}[F,F]$? This contradicts QED limit- there is no such δ_{n1} contribution from light-by-light-type subgraph.

Expanding now β_0 , β_1 , β_2 in terms of C_A , C_F , $T_f n_f$, using above presented representations and comparing them with the available analytical PT expansion for $D^{ns}(a_s)$ in $SU(N_c)$ up to a_s^4 with all colour structures fixed we obtain complete system of 22 equations. Solving it we get the expressions of D_0 (the polynomial prior $(\beta(a_s)/a_s)^0$) and D_1 - D_3 :

$$\begin{split} D_0(a_s) &= \frac{3}{4} C_F a_s + \left[-\frac{3}{32} C_F^2 + \frac{1}{16} C_F C_A \right] a_s^2 + \left[-\frac{69}{128} C_F^3 \right] \\ &- \left(\frac{101}{256} - \frac{33}{16} \zeta_3 \right) C_F^2 C_A - \left(\frac{53}{192} + \frac{33}{16} \zeta_3 \right) C_F C_A^2 \right] a_s^3 \\ &+ \left[\left(\frac{4157}{2048} + \frac{3}{8} \zeta_3 \right) C_F^4 - \left(\frac{3509}{1536} + \frac{73}{128} \zeta_3 + \frac{165}{32} \zeta_5 \right) C_F^3 C_A \right] \\ &+ \left(\frac{9181}{4608} + \frac{299}{128} \zeta_3 + \frac{165}{64} \zeta_5 \right) C_F^2 C_A^2 - \left(\frac{30863}{36864} + \frac{147}{128} \zeta_3 - \frac{165}{64} \zeta_5 \right) C_F C_A^3 \\ &+ \left(\frac{3}{16} - \frac{1}{4} \zeta_3 - \frac{5}{4} \zeta_5 \right) \frac{d_F^{abcd} d_A^{abcd}}{d_R} - \left(\frac{13}{16} + \zeta_3 - \frac{5}{2} \zeta_5 \right) \frac{d_F^{abcd} d_F^{abcd}}{d_R} n_f \right) \right] a_s^4 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

The expressions for D_1 - D_3 ; in the MS (The results for $C_0(a_s)$ - $C_4(a_s)$ were also obtained for the new representation of $C_{ns}^{Bjp}(a_s)$) $D_1(a_s) = \left(-\frac{33}{8} + 3\zeta_3\right)C_F a_s + \left[\left(\frac{111}{64} + 12\zeta_3 - 15\zeta_5\right)C_F^2\right]$ $-\left(\frac{83}{32}+\frac{5}{4}\zeta_3-\frac{5}{2}\zeta_5\right)C_F C_A \left|a_s^2+\left|\left(\frac{758}{128}+\frac{9}{16}\zeta_3-\frac{165}{2}\zeta_5+\frac{315}{4}\zeta_7\right)C_F^3\right|\right.$ $+ \left(\frac{3737}{144} - \frac{3433}{64}\zeta_3 + \frac{99}{4}\zeta_3^2 + \frac{615}{16}\zeta_5 - \frac{315}{8}\zeta_7\right)C_F^2 C_A$ $+\left(\frac{2695}{384}+\frac{1987}{64}\zeta_3-\frac{99}{4}\zeta_3^2-\frac{175}{32}\zeta_5+\frac{105}{16}\zeta_7\right)C_F C_A^2\right]a_s^3,$ $D_2(a_s) = \left(\frac{151}{6} - 19\zeta_3\right)C_F a_s + \left| \left(-\frac{4159}{384} - \frac{2997}{16}\zeta_3 + 27\zeta_3^2\right) \right| + \frac{1}{16}C_F a_s + \left| \left(-\frac{4159}{384} - \frac{2997}{16}\zeta_3 + 27\zeta_3^2\right) \right| + \frac{1}{16}C_F a_s + \left| \left(-\frac{4159}{384} - \frac{2997}{16}\zeta_3 + 27\zeta_3^2\right) \right| + \frac{1}{16}C_F a_s + \left| \left(-\frac{4159}{384} - \frac{2997}{16}\zeta_3 + 27\zeta_3^2\right) \right| + \frac{1}{16}C_F a_s + \left| \left(-\frac{4159}{384} - \frac{2997}{16}\zeta_3 + 27\zeta_3^2\right) \right| + \frac{1}{16}C_F a_s + \left| \left(-\frac{4159}{384} - \frac{2997}{16}\zeta_3 + 27\zeta_3^2\right) \right| + \frac{1}{16}C_F a_s + \frac{1}{16}C_$ $+\frac{375}{2}\zeta_5\Big)C_F^2+\Big(rac{14615}{256}+rac{39}{16}\zeta_3-rac{9}{2}\zeta_3^2-rac{185}{4}\zeta_5\Big)C_FC_A\Big|a_s^2\;,$ $D_3(a_s) = \left(-\frac{6131}{36} + \frac{203}{2}\zeta_3 + 45\zeta_5\right)C_F a_s \; .$

The fixation of $\{\beta\}$ -expanded coefficients for the D^{ns} at the a_s^4 level in $SU(N_c)$ without addition degrees of freedom (gluino)

Consider now the proposed by Mikhailov(07) $\{\beta\}$ -expansion of PT coefficients for the Adler function:

$$\begin{split} &d_1 = d_1[0] \ , \ d_2 = \beta_0 d_2[1] + d_2[0] \\ &d_3 = \beta_0^2 d_3[2] + \beta_1 d_3[0,1] + \beta_0 d_3[1] + d_3[0] \ , \\ &d_4 = \beta_0^3 d_4[3] + \beta_1 \beta_0 d_4[1,1] + \beta_2 d_4[0,0,1] \\ &+ \beta_0^2 d_4[2] + \beta_1 d_4[0,1] + \beta_0 d_4[1] + d_4[0] \end{split}$$

Without proposed by Kataev-Cvetic(17) application of the two-fold series expression in powers of the conformal anomaly and QCD coupling a_s it was possible to define the coefficients of the $\{\beta\}$ -expressions for d_i and the similar expressions for the coefficients of Bjorken sum rule c_i at the a_s^3 level only in $SU(N_c)$ + multiplets of gluino (Mikhailov (07), Kataev, Mikhailov (12-15)).

The $\{\beta\}$ expanded terms for D^{ns} in $SU(N_c)$

We present these terms obtained in QCD in the \overline{MS} -scheme using the factorized representation, which is NOT proved, but **does not** contradict any theoretical results. They differ in part from obtained in QCD+gluino theory (Mikhailov (07))

$$\begin{aligned} d_1[0] &= \frac{3}{4} C_F \ d_2[0] = \left(-\frac{3}{32} C_F^2 + \frac{1}{16} C_F C_A \right) \ d_2[1] = \left(\frac{33}{8} - 3\zeta_3 \right) C_F \\ d_3[0] &= -\frac{69}{128} C_F^3 - \left(\frac{101}{256} - \frac{33}{16} \zeta_3 \right) C_F^2 C_A \neq +\frac{71}{64} \mathbf{C}_F^2 \mathbf{C}_A \\ &- \left(\frac{53}{192} + \frac{33}{16} \zeta_3 \right) C_F C_A^2 \neq + \left(\frac{523}{768} - \frac{27}{8} \zeta_3 \right) \mathbf{C}_F \mathbf{C}_A^2 \\ d_3[1] &= \left(-\frac{111}{64} - 12\zeta_3 + 15\zeta_5 \right) C_F^2 \neq \left(-\frac{27}{8} - \frac{39}{4} \zeta_3 + \frac{15\zeta_5}{2} \right) \mathbf{C}_F^2 \\ &+ \left(\frac{83}{32} + \frac{5}{4} \zeta_3 - \frac{5}{2} \zeta_5 \right) C_F C_A \neq \left(-\frac{9}{64} + 5\zeta_5 - \frac{5}{2} \zeta_5 \right) \mathbf{C}_F \mathbf{C}_A \\ d_3[0, 1] &= \left(\frac{33}{8} - 3\zeta_3 \right) C_F \neq \left(\frac{101}{16} - 6\zeta_3 \right) \mathbf{C}_F \mathbf{d}_3[2] = \left(\frac{151}{8} - \frac{19}{8} \zeta_3 \right) \mathbf{C}_F \mathbf{c}_A \end{aligned}$$

The $\{\beta\}$ expansion QCD expression for d_4 and c_4 were also obtained

To insure that this was done the \overline{MS} -expression for $d_4[0]$ is presented only.

$$d_{4}[0] = \left[\left(\frac{4157}{2048} + \frac{3}{8}\zeta_{3} \right) C_{F}^{4} - \left(\frac{3509}{1536} + \frac{73}{128}\zeta_{3} + \frac{165}{32}\zeta_{5} \right) C_{F}^{3}C_{A} + \left(\frac{9181}{4608} + \frac{299}{128}\zeta_{3} + \frac{165}{64}\zeta_{5} \right) C_{F}^{2}C_{A}^{2} - \left(\frac{30863}{36864} + \frac{147}{128}\zeta_{3} - \frac{165}{64}\zeta_{5} \right) C_{F}C_{A}^{3} + \left(\frac{3}{16} - \frac{1}{4}\zeta_{3} - \frac{5}{4}\zeta_{5} \right) \frac{d_{F}^{abcd}d_{A}^{abcd}}{d_{R}} + \left(-\frac{13}{16} - \zeta_{3} + \frac{5}{2}\zeta_{5} \right) \frac{d_{F}^{abcd}d_{F}^{abcd}}{d_{R}} n_{f}$$

Note once more that $(d_F^{abcd} d_F^{abcd} / d_R) n_f$ term is not transformed to the QCD β_0 -dependent structure, namely into $d_4[1]$, since in our basic aim is to have analogy with QED. In QED this gauge factor labels the contribution of the convergent light-by-light scattering insertion into photon vacuum polarization function and therefore in QED contribute to $d_4^{QED}[0]$ -term.

The cross-check of the studies and the conformal symmetry limit identities

The multiplication of analytical expressions for the new QCD representations for $D^{ns}(a_s)$ and $C_{ns}^{Bjp}(a_s)$ at the a_s^4 -level result in confirmation of the discovered by Kataev, Mikhailov (12) form of the \overline{MS} -scheme CSB expression in the generalized Crewther relation

$$\Delta_{csb}(a_s) = \sum_{n \ge 1} \left(\frac{\beta(a_s)}{a_s}\right)^n P_n(a_s)$$
$$= \sum_{n \ge 1} \sum_{r \ge 1} \left(\frac{\beta(a_s)}{a_s}\right)^n P_n^{(r)}[k,m] C_F^k C_A^m a_s^r$$

with the same analytical coefficients. The QCD extension of the Crewther relation, obtained in the conformal symmetry limit with $\beta(a_s) \to 0$ now has the following form

$$(1 + D_0(a_s(Q^2)) \times (1 + C_0(a_s(Q^2))) = 1,$$

Notice cancellation of $d_F^{abcd} d_A^{abcd} / d_R$ and $d_F^{abcd} d_F^{abcd} / d_R) n_f$ a_s^4 -terms. Extra indication of consistency of used abcd = abcd = abcd

Model independent expressions

We study study the following from KS(15) and KM(15) links between the terms of $\{\beta\}$ -expansion for $D^{ns}(a_s)$ and $C^{Bjp}_{ns}(a_s)$, which follow from the CS limit of generalized Crewther relation:

$$\begin{split} c_3[0] + d_3[0] &= 2d_1d_2[0] - d_1^3 = -\frac{9}{16}C_F^3 + \frac{3}{32}C_F^2C_A, \\ c_4[0] + d_4[0] &= 2d_1d_3[0] - 3d_1^2d_2[0] + d_2[0]^2 + d_1^4 = \\ -\frac{333}{1024}C_F^4 + \left(-\frac{363}{512} + \frac{99}{32}\zeta_3\right)C_F^3C_A - \left(\frac{105}{256} + \frac{99}{32}\zeta_3\right)C_F^2C_A^2, \\ c_2[1] + d_2[1] &= c_3[0, 1] + d_3[0, 1] = c_4[0, 0, 1] + d_4[0, 0, 1] \\ &= \left(\frac{21}{8} - 3\zeta_3\right)C_F, \\ c_3[1] + d_3[1] + d_1(c_2[1] - d_2[1]) = c_4[0, 1] + d_4[0, 1] + d_1(c_3[0, 1] \\ -d_3[0, 1]) = -\left(\frac{397}{96} + \frac{17}{2}\zeta_3 - 15\zeta_5\right)C_F^2 + \left(\frac{47}{48} - \zeta_3\right)C_FC_A \; . \end{split}$$

They are scheme independent and valid in QCD with and without gluino.

Theoretical conclusions:

- In case of study of structure of PT series (say {β}-expansion partens and CS limit relations , which follow from generalized Crewther relation, it is possible to use either QCD or QCD+extra degrees of freedom
- In case we are interested in phenomenology of QCD gluionos are "artifacts". Better avoid them.
- New two-fold series representations for $D^{ns}(a_s)$ and $C_{ns}^{Bjp}(a_s)$ with ecat appearance of **powers of conformal anomaly** are proposed, They are true at a_s^4 -level. Are they related to the generalized Crewther ?
- Is it possible to prove these QCD expressions or understand them better?

Continuation of possible studies

- We have only two series for RG-invariant functions. No other examples can we check this structure using existing results ?
- Better understanding of the status of proposed by Brodsky et al PMC approach, links with other considerations and methods (say Cvetic, Valenzuela (2006); renormalon language
- Possible phenomenological applications-new studies of e^+e^- data (there are extra points from B-factory), new resummed studies of polarized Bjorken sum rule data- JLAB??
- Where CS Breaking terms may also manifest themselves in theory and (who knows future phenomenology, say study of formfactors of decays of light mesons ??)

Waiting for your comments or input, ladies and gentlemen!!