

The 21st Lomonosov Conference on Elementary Particle Physics Moscow, 24 Aug – 30 Aug 2023



# Status and perspectives of the AMoRE experiment

Kornoukhov Vasily on behalf of the AMoRE Collaboration MEPhI (Moscow, Russia) <u>vnkornoukhov@mephi.ru</u>



AMoRE (Advanced Mo-based Rare process Experiment): search for 0v2β-decay of <sup>100</sup>Mo isotope with scintillation cryogenic bolometer

China Germany India Indonesia Korea Pakistan Russia Thailand Ukraine



- 2003 the beginning of works on CaMoO<sub>4</sub> scintillation crystals growth in Korea (and in Russia)
- 2009 creation of International collaboration AMoRE
- 2006-2012 JSC Fomos-Materials developed the technology of <sup>48free</sup>Ca<sup>100</sup>MoO<sub>4</sub> crystals growth.
- 2013 Foundation of CUP (Center for Underground Physics IBS).



### Motivation for the search for neutrinoless double beta decay process



If the process exists: neutrino is Majorana particle (i.e. it is its own antiparticle) beyond the Standard Model.

- Violation of Lepton number conservation (ΔL=2): new physics
- Nature of neutrino (Majorana or Dirac particle?)
- The absolute neutrino mass scale (1/  $T_{1/2}^{0\nu} \sim m_{
  u}^2$ )
- CP- violation in the lepton sector

To observe  $2\nu\beta\beta$  decay, the single  $\beta$ -decay must be energetically forbidden due to energy conservation constraint  $\rightarrow$ 

In total 35 isotopes available and  $\sim$  11 of them can be used for  $0\nu\beta\beta$  search



#### Status and perspective of the AMoRE experiment



# Sensitivity of 0v2β-decay experiments: the problem of background and energy resolution

#### For "sizeable" background





#### AMoRE scintillation cryogenic detector

temperature sensor: MMC (Metallic Magnetic Calorimeter)

registration system: SQUID (Superconducting Quantum Interference Device) magnetometer

#### Simultaneous registration of two signals: phonon and light

#### Photon detector



E light



# Why is <sup>100</sup>Mo isotope chosen for AMoRE detector?

- ✓ High  $Q_{\beta\beta}$  = 3034 keV > <sup>208</sup>Tl γ-line (2615 keV) from rock and materials).
- ✓ Relatively short half life (0 $\nu\beta\beta$ ) expected from the theoretical calculation.
- ✓ High natural abundance: 9.7%
- ✓ Production of <sup>100</sup>Mo isotope@97% at industrial scale: centrifuges (ECP, Russia).



#### <sup>100</sup>Mo-based scintillation crystals (XMoO4) operated under cryogenic temperature.

- ✓ <sup>100</sup>Mo-based scintillation crystals: XMoO<sub>4</sub> (XMO, X =Ca, Li<sub>2</sub>, etc, ...) with simultaneous detection of light/heat signal → rejection of α-background
- ✓ Detector = Source: high efficiency ~  $80 \div 85\%$ .
- ✓ Technology of Czochralski crystal growth: High purity → very low intrinsic radioactive background.



### Implementation of AMoRE experiment (Stages Plan)





# Cryostat with shielding/AMoRE-Pilot and AMoRE-I in YangYang lab





 $\begin{array}{l} \mbox{Pulse-tube dilution refrigerator:} \\ \mbox{Operating at 10 mK with 1.2 $\mu$W cooling power.} \\ \mbox{Damping system to reduce vibration noise signals from the impulse tube of the CF-DR cryostat.} \end{array}$ 

15-20 cm Pb ( $\gamma$ ), boron and polyethylene (neutrons), Plastic scintillator muon counter (muons veto).

#### YangYang underground laboratory

-700 m minimum vertical depth (2000 m.w.e) Radon free air supplied



### **AMoRE-I** experiment

### Period: Aug 2020 – April 2023

18 crystals:

<sup>48free</sup>Ca<sup>100</sup>MoO<sub>4</sub>:

13 from Fomos-Materials (4.58 kg)

Li<sub>2</sub><sup>100</sup>MoO<sub>4</sub>:

5 from NIIC + 1 from CUP (1.61 kg)

-Total crystal mass = 6.19 kg, <sup>100</sup>Mo mass = 3.1 kg

#### **Upgrade from Pilot:**

- Stabilization heater for all crystals.
- •MMC sensor: AuEr → AgEr.
- •Using same cryostat + two stage temperature control:  $\langle \Delta T \rangle < 1~\mu K.$
- Shielding enhancements:
- -Outer Pb: 15 cm  $\rightarrow$  20 cm;
- Neutron shields: boric acid silicon + more PE / Boron-PE.
- Better muon counter coverage (~  $4\pi$ ).
- More supply of Rn-free air.





# AMoRE-I detector performance (energy calibration & resolution)





# The background spectrum AMoRE-I



All crystal excluding 1 LMO for very poor  $\beta/\alpha$  discrimination power:

13 CMO + 4 LMO: live exposure = 8.20 kg<sub>XMO</sub> • yr = 3.96 kg<sub>ISO</sub> • yr

- ✓ Anti-coincidence cuts reject events:
  - coincident at multiple crystals within 2 ms ( $\epsilon \sim 99.8\%$ )
  - within 10 ms after a muon counter event (  $\epsilon \sim 99,8\%$ )
- ✓ α-tagging of internal <sup>208</sup>Tl background within 20 min after a <sup>212</sup>Bi α-decay event candidate (ε ~ 98%)

Background = 0.037 +/- 0.001 counts/keV/kg/year, from ROI side band  $T_{1/2}^{0\nu}$  > 3.7×10<sup>24</sup> years at 90% C.L. (to be update)



### **AMoRE-II detector**

#### Detector array: 100 (88) kg of <sup>100</sup>Mo, 178 (157) kg of LMO crystals (360 modules)

Scintillating molybdate crystals CMO from Fomos-Materials of different sizes and  $Li_2MoO_4$  (LMO) by NIIC and CUP: D5 x 5 cm (310 gr) and D6 x 6 cm (~ 530 g)

**Recent R &D efforts at HQ (Daejeon): detector performance improved significantly:** 

- Energy resolution (FWHM) at 2.6 MeV: 7 ÷9 keV at 10 mK
- Light measurement: 0.8 0.95 keV/MeV
- Alpha particle Discrimination Power (DP): L/H ratio: 14 19.5 @ ~ 5MeV and PSD: ~5 @ ~ 5MeV
- Fast time response (rise time = 1 ÷ 2 ms @ 30 mK)



#### New Underground Laboratory Yemilab to host AMoRE-II





### AMoRE-II expected sensitivity and limits



YEONGDUK KIM 26th AMoRE collaboration meeting 16 Aug. 2023

Final results of AMoRE-I with further improvement Background level  $\leq 10^{-4}$  counts/keV/kg/year at 2860  $\div$  3200 keV AMoRE-II for  $T_{1/2}^{0\nu} > 5 \times 10^{26}$  years and 100 kg of <sup>100</sup>Mo x 5 years operation



# Conclusions

#### AMoRE-I

- The AMoRE-I total effective exposure : 3.12 kg<sub>Mo100</sub> year (from Aug. 2020 for 2.5 years)
  - ✓ The background level in AMoRE-I is ~ 0.037 cnts/keV/kg//year (at ROI)
  - ✓  $T_{1/2}^{0\nu}$  >3.7×10<sup>24</sup> years best 90% limit for <sup>100</sup>Mo (to be update) (current best limit: 1.8 × 10<sup>24</sup> of CUPID Mo)

#### AMoRE-II

- Detector array: 100 kg of <sup>100</sup>Mo, 178 kg of LMO crystals (360 modules) Ø5cm×H.5cm (310 g) and Ø6cm×H.6cm (520 g)
- Expected background at the ROI down to 10<sup>-4</sup> cnts/keV/kg/year
- AMoRE-II will run in two phases, aiming the final goal of  $T_{1/2}^{0\nu} > 5 \ge 10^{26}$  years ( $m_{ee} \simeq 2 \ge 10^{-2}$  eV).
- The first phase with 90 crystals (27 kg) of  $X^{100}MoO_4$  will start at the end of 2023.
- The construction of major facilities and subsystem are almost completed.
- Preparing to install DR (Dilution Refrigerator).

#### Yemilab

• A new underground laboratory in Korea (Yemilab) to host AMoRE-II experiment: 2,500 m<sup>2</sup> of experiment dedicated area & 1000 m vertical depth (2500 m.w.e) &  $1.0 \times 10^{-7} \,\mu/cm^2/sec$ 

# Back up slides



### AMoRE-I data taking



\*: ex) Bad photon channel of LMOCUP, phonon ch. 3 not working before 1<sup>st</sup> outage, severe fluctuation runs, ...

#### All Science Runs: Dec/2020 ~ Apr/2023

Hanbeom Kim (IBS/SNU) for 26<sup>th</sup> AMoRE Collab. Meeting Aug. 16 – 18, 2023



### Particle identification: coincidence events - 1



Events within ± 2ms time window to be coincidental

• ε ~ 99.8%

- (MVS) installed outside of the cryostat±10 ms windows are rejected
- ε ~ 99.8%



### Particle identification: coincidence events - 2

 $\alpha$ -tagging of internal TI-208 background



 $^{212}\text{Bi}$  alpha can be used for  $\alpha\text{-tagging}$  of internal  $^{208}\text{TI}$  background

- $^{212}\text{Bi} \rightarrow ^{208}\text{Tl}$  (  $\alpha$  35.94%):  $\text{T}_{1/2}$  =60.55 min, 6207.26 keV
- $^{208}\text{TI} \rightarrow ^{208}\text{Pb}$  (  $\beta$  ):  $T_{1/2}$  =3.053 min, Q  $^{\sim}$  5 MeV
- Events within 20 min window (> 3.053 min x 5) after each <sup>212</sup>Bi candidates are rejected
- $\epsilon$  ~ 98% (> 99% for many crystals, ~82% for the worst case (SB29))



# **AMoRE-II backgrounds estimation**



Eunju Jeon, CUP/IBS

AMoRE Collab. Meeting @IBS HQ, 16-18 August 2023

Status and perspective of the AMoRE experiment



# Particle identification: Alpha rejection (two signals: phonon and light)



- CMO shows better discrimination power (light yield: CMO > LMO).  $\checkmark$
- LMO has much less  $\alpha$  contamination.  $\checkmark$



### Yang Yang and Yemi (Handuk iron mine) underground laboratories



Bird view of Handeok Iron Mine



Handeok has two shafts for mining 1<sup>st</sup> shaft ~ 300 m long 2<sup>nd</sup> shaft 600 m long (NEW)



# New Underground Laboratory Yemilab to host AMoRE-II





# New Underground Laboratory Yemilab to host AMoRE-II





# Transportation to Yemi lab/ AMoRE-II: cage and rampway



26.08.2023



### AMoRE-II shielding system





26<sup>th</sup> AMoRE Collaboration meeting (23.08.17)

G.W.Kim

[inner]



### AMoRE-II detector: main components



#### **Towers arrangement**



#### Internal lead shield



Cold



# Radioactivity measurement for AMoRE-II





### Production of <sup>100</sup>Mo: 120 kg (for CUP IBS) + 8,25 kg (for JSC "Fomos Materials"):

JSC «The Electrochemical Plant» (ECP), Zelenogorsk, Russia (<u>https://www.ecp.ru/eng/</u>)

In form of  $^{100}MoO_3$  powder:

- Enrichment on <sup>100</sup>Mo: ~ 95%
- Radiopurity (ECP):

|           |                                                                                 | ICP-MS at CUP       |                                                 | U: ~ 0.2 ppb                  |                                                    | Th: ~ 0,05ppb                   |                 |
|-----------|---------------------------------------------------------------------------------|---------------------|-------------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------------|-----------------|
|           |                                                                                 | HPGe at BNO INR RAS |                                                 | <sup>226</sup> Ra: ≤ 8 mBq/kg |                                                    | <sup>228</sup> Ac: ≤ 3.5 mBq/kg |                 |
|           |                                                                                 |                     |                                                 |                               |                                                    |                                 |                 |
| ECP (BNO) | [µBq/kg]                                                                        |                     | <sup>228</sup> Ac                               | <sup>228</sup> Th             | <sup>226</sup> Ra                                  |                                 | <sup>40</sup> K |
|           | Raw <sup>100</sup> MoO <sub>3</sub><br>Purified <sup>100</sup> MoO <sub>3</sub> |                     | $260\pm50$                                      | $\textbf{210}\pm\textbf{50}$  | $\begin{array}{c} 260\pm50\\ 110\pm30 \end{array}$ |                                 | $8500\pm1400$   |
| CUP       |                                                                                 |                     | < 27                                            | < 16                          |                                                    |                                 | $1700\pm340$    |
|           |                                                                                 |                     | Yeon H., et al. Front. Phys. 11, 1142136 (2023) |                               |                                                    |                                 |                 |

Calcium carbonate enriched on <sup>40</sup>Ca and depleted on <sup>48</sup>Ca: 4,5 kg (for JSC "Fomos Materials")

Elektrohhimpribor (EKP), Lesnoy, Russia (<u>http://www.ehp-atom.ru/</u>)

In form of <sup>40</sup>CaCO<sub>3</sub> powder:

depletion on  ${}^{48}Ca < 0,001\%$ 

- ✓ Radiopurity: U ≤ 0.1 ppb, Th ≤ 0,1 ppb, Sr= 1 ppm, Ba = 1 ppm,
- 226Ra = 5 mBq/kg (NEOKHIM 1.4 mBq/kg), <sup>228</sup>Ac (<sup>228</sup>Th) = 1 mBq/kg



# AMoRE Hall in Yemilab (October 2022)





# <sup>100</sup>Mo 0vββ limit from AMoRE-I



- > ROI to contain most (> 99%) of the  $0\nu\beta\beta$  signal peak,  $\epsilon \sim 81\%$
- <sup>100</sup>Mo effective exposure: 3.11 kg yr
- Background = 0.037 +/- 0.001 counts/keV/kg/year, from ROI side band.
- Bayesian method (marginalization of nuisance parameters): combining the result of shape analysis at ROI, with a flat & exponential background constraint from the side band events for each crystal.

### $T_{1/2}^{0\nu}$ > 3.7×10<sup>24</sup> years at 90% C.L. (Current best limit: 1.8 × 10<sup>24</sup> of CUPID Mo)