Prospects for Heavy Majorana Neutrino searches at future lepton colliders

A. Drutskoy

The 21st Lomonosov Conference on Elementary Particle Physics Moscow, MSU, August 23-30, 2023

Outline

• Processes $e^+e^- \rightarrow N\nu$ and $\mu^+\mu^- \rightarrow N\nu$

K. Mekala, J. Reuter, and A.F. Zarnecki, JHEP 06 (2022) 010, arXiv:2202.06703

K. Mekala, J. Reuter, and A.F. Zarnecki, Phys. Lett. B 841 (2023) 137945, arXiv:2301.02602

P. Li, Z. Liu, K.F. Lyu, arXiv:2301.07117.

• Processes $e^+e^- \rightarrow N W^-e^+$ and $\mu^+\mu^- \rightarrow N W^-\mu^+$

E. Antonov, A. Drutskoy, M. Dubinin, arXiv:2308.02240.

• Processes $e^-e^- \rightarrow W^-W^-$ and $\mu^+\mu^+ \rightarrow W^+W^+$

T. Asaka, T. Tsuyuki, Phys. Rev. D 92, 9, 094012 (2015), arXiv:1508.04937. R. Jiang, T. Yang, S. Qian, Y. Ban, J. Li, Z. You and Q. Li, arXiv:2304.04483.

Seesaw Type I model

Main task of experimental particle physics is search for Beyond the Standard Model effects.

Seesaw Type I model: widely discussed in literature

Details about seesaw model are in Mikhail Dubinin talk.

Model includes Heavy Neutral Leptons (Majorana), maybe 3 HNL: N₁, N₂, N₃

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$

Neutrino mass matrix with Dirac and Majorana mass terms (y_D – Yukawa coupling matrix)

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \qquad \qquad M_D = \mathbf{y}_D \boldsymbol{\nu} / \sqrt{2} \qquad \qquad m_{\nu} \simeq -M_D M_N^{-1} M_D^T.$$

Seesaw mechanism: small masses of active neutrinos are defined by large M_N parameter of Majorana term (after diagonalizing mass matrix).

If $M_N \approx 100$ GeV (within collider energy reach), then $M_{_{
m V}} \approx 0.1$ eV if $y_{_{
m D}} \approx 10^{-6}$.

"Classical" seesaw mixing parameter $|V_{\ell N}|^2 \approx M_v/M_N \leq 10^{-12}$, specific models $\rightarrow \times 10^3$ -10⁸ Example: arXiv: 1101.1382 (T. Asaka, S. Eijima, H. Ishida, JHEP 1104:011,2011)

Experimental limits on mixing parameters

arXiv:1502.06541

Below 90 GeV → decays of K mesons, B mesons, Z bosons

Mostly LHC current upper limits and future estimates after 90 GeV, weak upper limits

GERDA experiment: neutrinoless double beta $(0\nu\beta\beta)$ decay. In some models this limit at high M_N mass can be circumvented

Process $e^+e^- \rightarrow Nv$

5

Process $\mu^+\mu^- \rightarrow N\nu$

FIG. 3: Limits on the coupling $V_{\ell N}^2$ for different Muon Collider setups (solid lines: 3 TeV – turquoise, 10 TeV – orange). Dashed lines indicate limits from current and future hadron [1, 5] machines, dashed-dotted for e^+e^- colliders [16]. See text for details.

MuC, μ⁺μ⁻, 3000 GeV, 1.0 ab⁻¹; μ⁺μ⁻, 10000 GeV, 10.0 ab⁻¹ Whizard 3, Delphes 3, BDT (TMVA, 8 variables)

→ Very strong upper limits can be obtained for HNL masses almost up to CM energy.

Process $\mu^+\mu^- \rightarrow N\nu$

arXiv:2301.07117

FIG. 10. The 95% exclusion limits on the $|U_{\mu}|^2 - m_N$ plane at different experimental facilities including LHC [32, 50, 79] and proposed future colliders (LHeC and FCC-he [80], FCChh [50, 81], ILC [28, 52]). MadGraph5, FeynRules

MuC, $\mu^+\mu^-$, 3000 GeV, 1.0 ab⁻¹; $\mu^+\mu^-$, 10000 GeV, 10.0 ab⁻¹ Upper limits are similar to ones shown in previous slide

Processes $e^+e^- \rightarrow N W^-e^+$ and $\mu^+\mu^- \rightarrow N W^-\mu^+$

arXiv:2308.02240

Processes with lepton number violation by 2 units: $e^+e^- \rightarrow NW^-e^+ \rightarrow W^-W^-e^+e^+(/\mu^+)$ $\mu^+\mu^- \rightarrow NW^-\mu^+ \rightarrow W^-W^-\mu^+\mu^+(/e^+)$ $e^-e^- \rightarrow NW^-e^- \rightarrow W^-W^-e^+e^-(/\mu^-)$ $\mu^+\mu^+ \rightarrow NW^+\mu^+ \rightarrow W^+W^+\mu^+\mu^-(/e^-)$ $\sigma (\mu^+\mu^+ \rightarrow NW^+\mu^+) = 2 \times \sigma (\mu^+\mu^- \rightarrow NW^-\mu^+)$

Cross sections of these processes are enhanced by soft photon exchange in *t*-channel (infrared effect).

Positron is going close to beam positron direction and cannot be detected.

Other particles (W^-, W^-, e^+) can be reconstructed with high efficiency.

Processes $e^+e^- \rightarrow N W^-e^+$ and $\mu^+\mu^- \rightarrow N W^-\mu^+$

arXiv:2308.02240

ILC, *e*⁺*e*⁻, 1 TeV, 1 ab⁻¹

MuC, μ⁺μ⁻, 3 TeV, 1 ab⁻¹

MuC, μ⁺μ⁻, 10 TeV, 10 ab⁻¹

Background can be effectively suppressed.

Signal: CompHEP, Pythia6, Delphes

Background: Whizard2 (Pythia6), Delphes

Upper limits obtained for $\ell^+\ell^- \rightarrow N W^-\ell^+$ process comparing with $\ell^+\ell^- \rightarrow N\nu$ process are slighly worse at $\sqrt{s} = 1$ TeV, about the same at 3 TeV, and better at 10 TeV.

→ It is possible to search for HNL using $\ell^+\ell^+ \rightarrow NW^+\ell^+$ with same-sign beams.

[TeV]

M(N)

Processes $e^-e^- \rightarrow W^-W^-$ and $\mu^+\mu^+ \rightarrow W^+W^+$

arXiv:1508.04937

Model includes 3 HNL, only one with large mixing parameter.

Clean hadronic final state W(jj) W(jj) with 4 jets. Energy E(4j) peaks at \sqrt{s} . No backgrounds under signal.

➡ Although upper limits are not strong, sensitivity to very large M(N) ~ 10⁵-10⁶ GeV

Processes $e^-e^- \rightarrow W^-W^-$ and $\mu^+\mu^+ \rightarrow W^+W^+$

 $\mu^+\mu^+ \rightarrow W^+ W^+$

MadGraph5, Pythia8, Delphes

BDT background suppression

Figure 8: 2σ exclusion limit of $|V_{\mu N_1}|^2$ as a function of varying Majorana neutrino mass M_N . The green solid line corresponds to the semi-leptonic processes at a muon collider with $\sqrt{s} = 1$ TeV, $\mathcal{L} = 1$ ab⁻¹. The red solid line corresponds to the pure-leptonic processes at a muon collider with $\sqrt{s} = 1$ TeV, $\mathcal{L} = 1$ ab⁻¹. The dark-blue line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 1$ TeV, $\mathcal{L} = 1$ ab⁻¹. The dark-blue line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 1$ TeV, $\mathcal{L} = 1$ ab⁻¹. The black line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 1$ TeV, $\mathcal{L} = 1$ ab⁻¹. The black line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 10$ TeV, $\mathcal{L} = 1$ ab⁻¹. The black dotted line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 10$ TeV, $\mathcal{L} = 1$ ab⁻¹. The black dotted line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 10$ TeV, $\mathcal{L} = 1$ ab⁻¹. The black dotted line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 10$ TeV, $\mathcal{L} = 1$ ab⁻¹. The black dotted line corresponds to the hadronic processes at a muon collider with $\sqrt{s} = 10$ TeV, $\mathcal{L} = 10$ ab⁻¹. The experimental result from LHC and other simulation results are also added for comparison.

Conclusions

• Future lepton colliders at high CM collision energies can provide very strong upper limits on mixing parameters $|V_{\ell N}|^2$ as function of M(N).

- Much stronger upper limits on $|V_{\ell N}|^2$ can be obtained for HNL masses M(N) > 100 GeV in future lepton colliders experiments comparing with upper limits expected in $(0v\beta\beta)$ experiments and at LHC.
- Expected upper limits could provide strict tests of specific Seesaw Type-I models with not constrained mixing parameter.

MC event simulation

Signal events : CompHEP generator \rightarrow Pythia 6 \rightarrow Delphes (detector modelling)

Background events : Whizard 2 generator (Pythia 6) → Delphes

<u>Generators</u>: no beam polarization, ISR included

<u>Delphes</u>: ILD card at 1 TeV e^+e^- collisions, MuC card at 3 TeV and 10 TeV $\mu^+\mu^-$ collisions

<u>Jet reconstruction</u>: Valencia algorithm, reasonable shapes comparing with full simulation. Algorithm is forced to reconstruct 4 jets. At high W and Z energies we observe jet overlapping \rightarrow we have to treat two jets as one object (W or Z boson).

Preselections:

 $|\eta (jet)| < 0.9$ $|\eta (lepton)| < 0.9$ E(jet) > 30 GeV E(lepton) > 30 GeV

Event kinematics (\sqrt{s} = 3 TeV, M(N) = 1 TeV)

Figure 10: Distribution of the cosine of the lepton emission angle in the N rest-frame for the Majorana (pink dashed line) and the Dirac (green solid line) neutrinos with a mass of 500 GeV at CLIC3000 (generator level)

Majorana function (pink line) includes term f = N(1+cos(theta)) with lepton number conservation and term f = N(1-cos(theta)) with nonconservation.

Angular distributions for jets and lepton depend on CM energy and HNL mass.

Diagrams for $\mu^+\mu^- \rightarrow NW^-\mu^+$ process

-W-

Inverse Seesaw model

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & 0 & M \\ 0 & M & \mu \end{pmatrix}$$

 $m_D = \boldsymbol{y}_D / \sqrt{2}$

A. G. Dias, C. A. de S. Pires, P. S. Rodrigues da Silva, and A. Sampieri, "A Simple Realization of the Inverse Seesaw Mechanism," *Phys. Rev. D* 86 (2012) 035007, arXiv:1206.2590 [hep-ph].

S. S. C. Law and K. L. McDonald, "Generalized inverse seesaw mechanisms," *Phys. Rev. D* 87 (2013) no. 11, 113003, arXiv:1303.4887 [hep-ph].

R. N. Mohapatra and J. W. F. Valle, "Neutrino Mass and Baryon Number Nonconservation in Superstring Models," *Phys. Rev. D* 34 (1986) 1642.

E. Ma, "Lepton Number Nonconservation in E(6) Superstring Models," *Phys. Lett. B* 191 (1987) 287.

E. Ma, "Radiative inverse seesaw mechanism for nonzero neutrino mass," *Phys. Rev. D* 80 (2009) 013013, arXiv:0904.4450 [hep-ph].

F. Bazzocchi, "Minimal Dynamical Inverse See Saw," *Phys. Rev. D* 83 (2011) 093009, arXiv:1011.6299 [hep-ph].

$$m_{\nu} \approx \frac{m_D^2}{M} \frac{\mu}{M} \quad M_{1,2} \approx M \pm \frac{1}{2}\mu$$
$$|U_{\ell}|^2 = \sin^2 \theta = \left(\frac{m_D}{M}\right)^2 = \frac{m_{\nu}}{\mu}$$

 μ is a free parameter and mixing parameter may be sizable.

Seesaw Type I model

Seesaw type-I model with unitarity is installed in generator CompHEP as proposed in arXiv: 1101.1382 (Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, JHEP 1104:011,2011).

<u>Model</u>: 3 Heavy Neutral Leptons (Majorana), N1, N2, N3. For simplicity we include in calculations only one HNL with $M(N) \ge 100$ GeV.

It can be realized in two scenarios: 1) huge masses of N2 and N3, 2) very small mixing parameter $|V_{\ell N1}|^2$ for "small" mass N1, that could be resulted from specific *CP*-violating phases in PMNS matrix (arXiv:1508.04937).

To compare our results with recent results obtained in studies of $e^+e^- \rightarrow N_V$ process (arXiv:2202.06703), we also assume:

$$|V_{eN}|^2 = |V_{\mu N}|^2 = |V_{\tau N}|^2 = |V_{\ell N}|^2 = 0.0003$$

Final limits on $|V_{\ell N}|^2$ will not depend on this assumption of mixing parameters.

HNL width is included in calculations (same as in arXiv:2202.06703) → negligible effect.