

NRC Kurchatov Institute KCTEP

Searching for Majorana neutrinos with nEXO

Belov V.A. for nEXO coll.

Double beta decay

2v mode is a conventional 2nd order process in Standard Model discovered for many isotopes

0ν mode

is a hypothetical process always means New Physics. This is search for: Lepton Number Violation Majorana fermions To reach high measurement sensitivity for 0v mode one requires:

- High energy resolution
- Large Isotope mass
- Low background

Why xenon

Energy resolution is poorer than the crystalline devices (~ factor 10), but...

- <u>Monolithic detector.</u> Xenon can form detection medium, allow self shielding, surface contamination minimized. Very good for large scale detectors.
- <u>Has high Q value</u>. Located in a region relatively free from natural radioactivity.
- Isotopic enrichment is easier. Xe is already a gas & ¹³⁶Xe is the heaviest isotope.
- <u>Xenon is "reusable"</u>. Can be purified & recycled into new detector (no crystal growth).
- <u>Minimal cosmogenic activation</u>. No long lived radioactive isotopes of Xe.
- <u>Energy resolution can be improved</u>. Using scintillation light/ionization correlation.
- <u>Particle identification</u>. Slightly limited, but can be used to tag alphas from Rn chain.

... admits a novel coincidence technique. Background reduction by Ba daughter tagging (M.Moe PRC 44, R931, 1991).

Vladimir Belov

EXO-200 detector

- Double Time Projection Chamber (TPC)
- 110 kg of liquid xenon in active volume enriched to 80.6 in ¹³⁶Xe
- Reading both ionization and scintillation
- Drift field 564 V/cm
- Comprehensive material screening program
- Massive background shielding (> 50 cm of HFE, 5 cm of copper, 25 cm of lead)
- Located in salt mine at 1600 m.w.e.

EXO-200 detector: JINST 7 (2012) P05010

nEXO experiment

28.08.2023 4 / 19

EXO-200 results

- EXO-200 was the first experiment with hundreds of kg of isotope to run
- Very good ~1% energy resolution in entire volume
- Excellent background that was successfully predicted before turning on the detector
- Full qualification of intrinsic, natural and external sources of background radiation
- Sensitivity increased linearly with exposure
- EXO-200 demonstrated power of LXe technology and our ability to use it
- Success of EXO-200 paves the way for 5-ton next generation experiment (nEXO) with projected half-life sensitivity ~10²⁸ yr

LXe is a good option for a very large detector

- Shielding of detectors for 2β is more complicated than for WIMP searches, because attenuation length of corresponding gammas is much bigger
- Monolithic/homogeneous construction is key due to benefits of self shielding when detector size becomes much bigger than attenuation length

nEXO experiment

Vladimir Belov

LXe is a good option for a very large detector

- The homogeneous detector with advanced topological reconstruction has a proven track record for γ background identification and rejection.
- The ratio of scintillation to ionization allows to quantify background due to radon contained in the LXe by tagging alphas.

- Multi-parameter analysis also makes the measurement robust with currently unknown backgrounds.
- The energy resolution, still important, is good enough, once the scintillation and ionization are used in tandem. nEXO will have a resolution <1% at the Q-value.

Vladimir Belov

Experiment location

The SNOLAB Cryopit is the favourite location for nEXO and plenty of site engineering for us has been already carried out by SNOLAB

Vladimir Belov

nEXO experiment

28.08.2023 8 / 19

Mine shaft and Water tank

- Pure water passive shielding to suppress external gamma and neutrons
- Active veto water Cherenkov detector to tag cosmic muons
- Steel cylinder tank equipped with PMTs and reflective coating
- Contains required support structures to hold cryostat and interconnections
- Already funded by CFI

Detector overview

nEXO detector is an evolution from EXO-200, with specific R&D done over the last 10 years

	EXO-200:	nEXO:	Improvements:
Vessel and cryostat	Thin-walled commercial Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background
High voltage	Max voltage: 25 kV (end-of-run)	<i>Operating</i> <i>voltage: 50 kV</i>	Full scale parts tested in LXe prior to installation to minimize risk
Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D identified 10x lower bkg substrate and demonstrated digital signal transmission
e ⁻ lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surface to volume ratio, detailed materials screening program
Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collection with tiles in LXe, detailed simulation developed
Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors
Energy resolution	1.2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible readout noise in light channels)
Electronics	Conventional room temp.	In LXe ASIC- based design	Minimize readout noise for light and charge channels, nEXO prototypes demonstrated in R&D and follow from LAr TPC lineage
Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200
Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas and more fully contained Comptons

28.08.2023

10/19

Vladimir Belov

Detector internals

- Single drift TPC, anode on top, cathode at the bottom
- Right cylinder ~130 cm, thin TPC vessel of ultra pure electroformed copper
- ~4800 kg of liquid xenon with enrichment 90% of ¹³⁶Xe
- Refrigerated by surrounding coolant liquid
- Charge and light readout
- Drift field 400 V/cm
- Estimated energy resolution <1%
- Ultra clean for electronegative impurities to reach 10 ms electron lifetime

28.08.2023

11 / 19

Charge readout

- Segmented anode at the top is made of solid tiles 96×96 mm
- Tile is low background fused silica with TSV (through-silicon-vias)
- Tile is tightly covered with 4.2×4.2 mm charge-sensitive metal pads
- Pads are connected into orthogonal strips like checker board with effective 6 mm pitch
- Low noise front end electronics in LXe right above the anode plane
- Working samples already in hand and tested

Ionization tile: JINST 13 (2018) P01006

28.08.2023

12/19

Vladimir Belov

Light readout

- Photosensors are on a 'barrel' behind field shaping rings
- Naturally VUV-sensitive 1 cm SiPMs with TSV to cover 4.6 m² area
- Silicon or fused silica interposer to hold and connect SiPMs and front-end electronics in LXe behind the barrel
- HPK and FBK 6 mm samples are tested
- Photon detection efficiency 20–25%
- Coherent avalanches 10–20%
- Dark noise 0.2–0.3 Hz/mm²
- New 10 mm samples arrived

SiPM: Eur.Phys.J.C 82 (2022) 12, 1125

28.08.2023

13/19

Signal and background

- nEXO measures multiple parameters for each event to robustly identify a 0vββ signal
- Multi-parameter analysis provides much more information than just energy

Vladimir Belov

Signal and background

- Data from background dominant regions isn't just thrown away, it is used for simultaneous precise measurement of background *in situ*
- Likelihood fit allows optimal weighting between signal and background combining energy, topology, and standoff over full 3D parameter space
- For those who wants a 'crystal clear signal' we do have a background free spot with reasonable statistics
- Any unknown external background would leave hundreds of events at low standoff and will be noticed
- Any unknown internal background can be checked by filling with natural or depleted xenon

Sensitivity

- nEXO is a discovery experiment, which will search for 0vββ with half-life sensitivity approximately 2 orders of magnitude beyond existing experiments
- nEXO sensitivity reaches 10²⁸ yr in 6.5 yr data taking

Vladimir Belov

nEXO experiment

28.08.2023 16 / 19

Comparison with other experiments

- nEXO 3σ discovery sensitivity for the median NME model considered is 11.1 meV, reaching beyond IO further into NO
- nEXO extends the T_{1/2} reach into new physics by ~2 orders of magnitude, with substantial chance of making a discovery
- nEXO has a slightly better physics reach with respect to other experiments (but the NME uncertainty is large)

Sensitivity: J.Phys.G 49 (2022) 1, 015104

Vladimir Belov

nEXO experiment

28.08.2023 17 / 19

Conclusion

- nEXO is a project since 2022
- It is an important part of a long-range plan, since a healthy neutrinoless double-beta decay program requires several isotopes
- Liquid xenon is well developed & scalable technology
- Complex multiparameter analysis provides robustness to unknown backgrounds and background fluctuations
- nEXO extends the $T_{1/2}$ reach into new physics by ~2 orders of magnitude, with substantial chance of making a discovery
- Can probe effective Majorana neutrino masses down to 15 meV
- nEXO can make a discovery by itself, by repeating the experiment with nonenriched Xenon to confirm that a signal goes away
- nEXO is a world-wide effort, including, for the time being, 9 Countries, 33 institutions, 186 collaborators

Thank you

Vladimir Belov

nEXO experiment

28.08.2023 19 / 19