Particle correlations in the model of interacting colour strings for $p+p$ collisions

Daria Prokhorova, Evgeny Andronov (St. Petersburg State University)

XXI Lomonosov Conference on Elementary Particle Physics, Moscow, 26 August 2023

based on D.P., E. Andronov, G. Feofilov, Physics 2023, 5(2), 636-654

Typical event browser in High Energy AA collision

- soft particle production dominates ($p_{T}<1 \mathrm{GeV} / \mathrm{c}$)
- complexity of perturbative QCD calculations
- phenomenological model of colour strings!
- the largest contribution to errors in model calculations comes from uncertainties in initial states
[https://cds.cern.ch/record/2032743]

Multipomeron exchange in inelastic $p+p$ interaction

Number of strings in an event, $n_{\text {str }}=2 n_{\text {pom }}$ [A.Capella et al, Phys. Rep. 1994, 236, 225-329] , determined by the number of cut pomerons following [A.Kaidalov, K. Ter-Martirosyan, Phys. Lett. B 1982, 117, 247-251] :

$$
\begin{equation*}
P\left(n_{\text {pom }}\right)=C(z) \frac{1}{z n_{\text {pom }}}\left(1-\exp (-z) \sum_{l=0}^{n_{\text {pom }}-1} \frac{z^{l}}{l!}\right) \tag{1}
\end{equation*}
$$

where $z=\frac{2 w \gamma s^{\Delta}}{R^{2}+\alpha^{\prime} \ln s}, w=1.5, \Delta=\alpha(0)-1=0.2, \gamma=1.035 \mathrm{GeV}^{-2}$ и $R^{2}=3.3 \mathrm{GeV}^{-2}, \alpha^{\prime}=0.05 \mathrm{GeV}^{-2}$ [v.vechernin, S.Belokurova, J. Phys. Conf. Ser. 2020, 1690, 012088].

Event multiplicity is defined as

$$
\begin{equation*}
P\left(N_{\mathrm{ch}}\right)=\sum_{n_{\mathrm{pom}}=1}^{\infty} P\left(n_{\mathrm{pom}}\right) P_{n_{\mathrm{pom}}}\left(N_{\mathrm{ch}}\right) \tag{2}
\end{equation*}
$$

where $P_{n_{\text {pom }}}\left(N_{c h}\right)$ - multiplicity distribution from a fixed number of pomerons.

Dynamics of colour strings in the transverse plane

The strings move as a whole according to [T.Kalaydzhyan, E.Shuryak, Phys. Rev. C 2014, 90, 014901]:

$$
\begin{equation*}
\ddot{\vec{r}}_{i}=\vec{f}_{i j}=\frac{\vec{r}_{i j}}{\tilde{r}_{i j}}\left(g_{N} \sigma\right) m_{\sigma} 2 K_{1}\left(m_{\sigma} \tilde{r}_{i j}\right) \tag{3}
\end{equation*}
$$

with $\tilde{r}_{i j}=\sqrt{r_{i j}^{2}+s_{\text {string }}^{2}}, s_{\text {string }}=0.176 \mathrm{fm}, g_{N} \sigma=0.2, m_{\sigma}=0.6 \mathrm{GeV} / c^{2}$.
String density depends on system evolution time τ :

Example for 16 strings in an event: (left) initial positions and trajectories, (center) positions at time $\tau_{\text {deepest }}$ when the minimum potential energy of the string system is reached, (right) positions at $\tau=1.5 \mathrm{fm} / \mathrm{c}$.

Longitudinal dynamics of colour strings

The initial positions of strings' ends in rapidity are determined by the momenta and masses of the corresponding partons:

$$
\begin{equation*}
y_{q}^{\text {init }}= \pm \operatorname{arcsinh}\left(\frac{x_{q} p_{\text {beam }}}{m_{q}}\right) \tag{4}
\end{equation*}
$$

Due to string tension, $\left|\frac{d p_{q}}{d t}\right|=-\sigma$, rapidity of strings' massive ends decreases [c.Shen, B.Schenke, Phys. Rev. C 2018, 97, 024907] by:

$$
\begin{equation*}
y_{q}^{\text {loss }}=\mp \operatorname{arccosh}\left(\frac{\tau^{2} \sigma^{2}}{2 m_{q}^{2}}+1\right), \tag{5}
\end{equation*}
$$

where τ - as in transverse dynamics, $\sigma=0.16 \mathrm{GeV} / \mathrm{fm}$.
Result: a set of parallel strings of different lengths and at different positions with respect to midrapidity.

String fusion and formation of string clusters

String fusion on a grid [M.Braun et al, Eur. Phys. J. C 2004, 32, 535-546]:

Schematic representation of the 3-D pattern of string fusion: 3 strings with $k=1,1,1$, centered in the same cell (0.3 fm) in the transverse plane, after taking into account overlaps - 2 strings with $k=1,1$ and 3 string clusters with $k=2,3,2$.

Changing the average multiplicity from cluster of k strings [m.Braun et al, Int. J. Mod. Phys. A 1999, 14, 2689-2704]: $\langle\mu\rangle_{k}=\mu_{0} \sqrt{k}$
and average transverse momentum $\quad\left\langle p_{T}\right\rangle_{k}=p_{0} R^{\beta}$, где
$\beta=1.16\left[1-(\ln \sqrt{S}-2.52)^{-0.19}\right]$ [v.kovalenko et al, Universe 2022, 8, 246].
μ_{0} and $p_{0}-$ characteristics of independent sources - free parameters of the model.

Efficient string hadronisation

Splitting strings in rapidity into segments of length $\varepsilon=0.1$:

- mean multiplicity from ε interval $\left\langle N_{\varepsilon}\right\rangle=\mu_{0} \varepsilon \sqrt{k}$
- multiplicity from Poisson distribution $N_{\varepsilon}=P\left(\left\langle N_{\varepsilon}\right\rangle\right)$

For each particle we define transverse momentum [E.Gurvich, Phys. Lett. B 1979, 87, 386-388] according to

$$
\begin{equation*}
f\left(p_{T}\right)=\frac{\pi p_{T}}{2\left\langle p_{T}\right\rangle_{k}^{2}} \exp \left(-\frac{\pi p_{T}^{2}}{4\left\langle p_{T}\right\rangle_{k}^{2}}\right), \tag{6}
\end{equation*}
$$

and its sort according to $\sim \exp \left(-\pi m_{i}^{2} / \sigma_{\text {eff }} R^{2 \beta}\right)$, where i corresponds to π, K, p particles and ρ resonance, $\sigma_{\text {eff }}=4 p_{0}^{2}$.
Knowing m_{i}, we find p_{z} and pseudorapidity:

$$
\begin{equation*}
\eta=\frac{1}{2} \ln \left(\frac{|\vec{p}|+p_{z}}{|\vec{p}|-p_{z}}\right), \tag{7}
\end{equation*}
$$

where $|\vec{p}|=\sqrt{p_{T}^{2}+p_{2}^{2}}$.

Correlation observables

1. Correlation function $\left\langle p_{T}\right\rangle-N$, where $\left\langle p_{T}\right\rangle$ is event average particle transverse momentum and N is charged particles multiplicity
2. Correlation coefficient b_{B-F} [s.uhlig et al, Nucl. Phys. B 1978, 132, 15-28]

$$
\begin{equation*}
b_{B-F}=\left.\frac{d\left\langle N_{B}\left(N_{F}\right)\right\rangle}{d N_{F}}\right|_{N_{F}=\left\langle N_{F}\right\rangle}, \tag{8}
\end{equation*}
$$

which for the case of a linear correlation function $\left\langle N_{B}\left(N_{F}\right)\right\rangle$ [A.Capella, J. Tran Thanh Van, Phys. Rev. D 1984, 29, 2512-2516] reads:

$$
\begin{equation*}
b_{\text {corr }}\left[N_{F}, N_{B}\right]=\frac{\left\langle N_{F} N_{B}\right\rangle-\left\langle N_{F}\right\rangle\left\langle N_{B}\right\rangle}{\left\langle N_{B}^{2}\right\rangle-\left\langle N_{B}\right\rangle^{2}} . \tag{9}
\end{equation*}
$$

Approximation of ALICE data at $\sqrt{s}=900 \mathrm{GeV}$ for N_{ch} and η

Average multiplicity per rapidity unit: $\mu_{0}=0.87$.

Model calculation for independent sources (blue lines) and for interacting strings (red lines) compared to ALICE data [k.Aamodt et al. [ALICE Collaboration] Eur.
Phys. J. C 2010, 68, 345-354] (black squares) for inelastic $p+p$ interactions at $\sqrt{s}=900 \mathrm{GeV}$. Left: multiplicity distribution for $|\eta|<1$, right: η-spectrum

Approximation of $\left\langle p_{T}\right\rangle-N$ correlation function in ALICE data

Average transverse momentum: $p_{0}=0.38 \mathrm{GeV} / \mathrm{c}$.

$\left\langle p_{T}\right\rangle-N$ correlation function for particles with $|\eta|<0.8$ and $0.15<p_{T}<4$ $\mathrm{GeV} / \mathrm{c}$ in inelastic $p+p$ interactions at $\sqrt{s}=900 \mathrm{GeV}$. Adjusting the model (red triangles) to ALICE data [K. Aamodt et al [ALICE Collaboration]. Phys. Lett. B 2010, 693, 53-68] (black line).

Correlation coefficient $b_{\text {corr }}\left[N_{F}, N_{B}\right]$

$b_{\text {corr }}\left[N_{F}, N_{B}\right]$ as a function of the distance $\Delta \eta$ between the Forward and Backward η intervals for inelastic $p+p$ interactions at $\sqrt{5}=900 \mathrm{GeV}$. Particle selection $0.3 \mathrm{GeV} / \mathrm{c}<p_{T}<1.5 \mathrm{GeV} / c$. Line drawn through ALICE data [J.Adam et al. [The ALICE Collaboration] J. High Energy Phys. 2015, 5, 97]. PYTHIA event generator with and without colour reconnection [c.Bierlich et al arXiv:2203.11601].

Correlation coefficient $b_{\text {corr }}\left[N_{F}, N_{B}\right]$

- no dependence on $\Delta \eta$ for $\tau_{\text {deepest }}$, because for $\left\langle\tau_{\text {deepest }}\right\rangle=0.73 \mathrm{fm} / \mathrm{c}$ the strings fragment on average into both η-windows
- for $\tau=1.5 \mathrm{fm} / \mathrm{c}$ the correlation weakens with $\Delta \eta$, since short strings appear fragmenting into only one η-window
- PYTHIA and ALICE data decrease due to short-range correlations

Summary and Outlook

The novelty of the approach: simultaneous consideration of 3-D string dynamics and the mechanism of string fusion.

Main observations:

1. need to introduce a string fusion mechanism to describe the $\left\langle p_{T}\right\rangle-N$ correlation function
2. nontrivial dependence of $b_{\text {corr }}\left[N_{F}, N_{B}\right]$ on the evolution time of the string density τ : modification of the background of long-range correlations

Plans: study of azimuthal correlations along with rapidity ones.

THANK YOU FOR YOUR ATTENTION

This research has been conducted with financial support from St. Petersburg State University (projects No 94031112 and 105701318).

