

Observation of new structure in the $J/\psi J/\psi$ mass spectrum in proton-proton collisions at $\sqrt{s} = 13$ TeV

Petrov Nikita (on behalf of the CMS Collaboration) MIPT, Moscow <u>nikita.petrov@cern.ch</u>

Overview

- Motivation
- CMS experiment
- Selection procedure
- CMS non-interference model
- LHCb models
- CMS interference model
- Systematic uncertainties
- Results discussion
- Summary

Theoretical motivation

Theoretical models consider different internal structures of the exotic states, like X(3872)

Theoretical motivation

• Theoretical studies of $J/\psi J/\psi$ structures started since 1975

L	S	J ^{PC}	Mass (GeV)				
1	0 1 2	1** 0**, 1**, 2** 1**, 2**, 3**	6.55		7 Dhua	77 (1091) (217
2	0	2** 1**, 2**, 3** 0**, 1**, 2**, 3**, 4**	6.78	L	Z. Phys. C	J ^{PC}	<u>Mass (GeV)</u>
	0	3		1	0	2**	6.82
3	2	1, 2, 3, 4, 5	6.76	3	0.	3	7.41

- Theoretical studies on $(c\overline{c}c\overline{c})$, $(b\overline{b}b\overline{b})$, $(b\overline{b}c\overline{c})$:
 - controversial on existence of bound states;
 - consistent on existence of resonant states. PRD 100 (2019) 096013

Experimental motivation

- Theoretical studies predict lots of $cc\overline{c}c$, $bc\overline{b}c$ and $bb\overline{b}b$ exotic states
- However various approaches provide different predictions, moreover majority of them don't say anything about production cross-sections of these states.
- CMS and LHCb Collaborations performed searches for heavy $bb\overline{b}b$ tetraquarks in Y(1S) $\mu^+\mu^-$ final state, but set only upper limits on production cross-sections times branching fractions depending on mass of searched state

Experimental motivation

- In 2020, LHCb collaboration reported observation of X(6900) state decaying to $J/\psi J/\psi$ final state using combination of Run I and Run II data
- A fit model without interference does not describe the dip at 6750 MeV

- Assuming interference between NRSPS component and X(6900) satisfactory description was achieved
- Structure at the very threshold was not understood, described by a sum of two BWs
- Decay into $J/\psi J/\psi$ suggests fully-charm tetraquark nature of the X(6900) state

CMS experiment

- Excellent muon system with large rapidity coverage and high-purity muon ID
- Good resolution in $p_T \sim 1\%$ for central region of tracker
- Special muon triggers, including 3µ
- Large integrated luminosity

Event selection

Muon selection

- $p_T(\mu^{\pm}) > 2.0 \text{ GeV/c}$
- $|\eta(\mu^{\pm})| < 2.4$
- All muons are <u>soft</u>
- For 2017-18 years: $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$ for at least one $\mu^+\mu^-$ pair, which has $vtxprob(\mu^+\mu^-) > 0.5\%$ and 2.95 $< m_{\mu^+\mu^-} < 3.25 \text{ GeV}$

J/ψ selection

 $\begin{array}{ll} \bullet 2.95 &< m_{J/\psi} < 3.25 \ GeV \\ \bullet p_T(J/\psi) > 3.5 \ GeV/c \\ \bullet vtxprob(J/\psi) > 0.5\% \\ \bullet Constrained \ vtxprob(J/\psi) > 0.1\% \end{array}$

 $\frac{J/\psi J/\psi \text{ selection}}{vtxprob(4\mu) > 0.5\%}$ $\frac{vtxprob(J/\psi J/\psi) > 0.1\%}{Proper HLT is fired in event}$

Multiple candidates

•Choose the best candidate with minimum $\left(\frac{M(J/\psi_1) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_1))}\right)^2 + \left(\frac{M(J/\psi_2) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_2))}\right)^2$ value if there are 4 muons in event, but more than one candidate (~0.3%) •Keep all candidates if there are more then 4 muons in event (~0.2%)

Non-interference CMS model: 3 BWs + Background

 $pdf(m) = \sum_{i} N_i(|BW_i(m;m_i,\Gamma_i)|^2 \otimes R(m_i)) + N_{NRSPS} \cdot pdf_{NRSPS}(m,p_2) + N_{DPS} \cdot pdf_{DPS}(m),$

	BW_1	BW ₂	BW ₃
<i>m</i> [MeV]	$6552\pm10\pm12$	$6927\pm9\pm4$	$7287^{+20}_{-18}\pm 5$
Γ [MeV]	$124^{+32}_{-26}\pm 33$	$122^{+24}_{-21}\pm18$	$95^{+59}_{-40}\pm19$
N	470^{+120}_{-110}	492^{+78}_{-73}	156^{+64}_{-51}

- Confirmation of BW2[X(6900)] (9.4 σ , >9.7 σ (syst.))
- **Observation** of BW1 (6.5 σ , >5.7 σ (syst.))
- Evidence for BW3 (4.1 σ , >4.2 σ (syst.))

LHCb model II (2 BW, "X(6700)" interferes with NRSPS) $pdf(m) = N_{inter.}(|Ae^{i\phi} \cdot BW_1(m;m_1,\Gamma_1) + \sqrt{pdf_{NRSPS}(m,p_2)}|)^2 + N_2(|BW_2(m;m_2,\Gamma_2)|^2 \otimes R(m_2)) + N_{DPS} \cdot pdf_{DPS}(m),$

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886\pm11\pm11$	$168\pm33\pm69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
- The model poorly describes threshold and ~7300 MeV regions

Interference CMS model: 3 interfering BW + Background (null) $pdf(m) = N_{inter.}(|A_1e^{i\phi_1} \cdot BW(m; m_1, \Gamma_1) + BW_2(m; m_2, \Gamma_2) + A_3e^{i\phi_3} \cdot BW_3(m; m_3, \Gamma_3)|)^2 + N_{Th.} \cdot |BW_0(m; m_0, \Gamma_0)|^2 \otimes R(m_0) + N_{NRSPS} \cdot pdf_{NRSPS}(m, p_2) + N_{DPS} \cdot pdf_{DPS}(m)$

Parameters systematic summary

Fit	Dominant sources	M_{BW_1}	$M_{\rm BW_2}$	$M_{\rm BW_3}$	Γ_{BW_1}	Γ_{BW_2}	Γ_{BW_3}
No-interference	Signal shape	3	3	3	10	5	5
	NRSPS shape	3	1	1	18	15	17
	Feed-down	11	1	1	25	8	6
	Total uncertainty	12	4	5	33	18	19
Interference	Signal shape	7	12	7	56	8	7
	DPS shape	1	3	2	18	6	2
	NRSPS shape	9	14	13	85	9	20
	Mass resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	<1	5	3	2
	Food-down	+0	+44	+38	+0	+19	+12
	Teed-down	-27	-0	-0	-210	-0	-0
	Total uncertainty	+16	+48	+41	+110	+25	+29
	iour uncertainty	-31	-20	-15	-240	-17	-26

- Largest source of systematic uncertainties: NRSPS shape, feed-downs (X -> charm charm -> $J/\psi J/\psi$ + smth.)
- The effects of feed-down components in the interference model can produce large asymmetric uncertainties, so an asymmetric uncertainty is assigned for this source.

Comparison between LHC experiments

arXiv:2304.08962

CMS experiment confirmed X(6900), observed X(6600) and found an evidence for X(7300)

Comparison with theoretical predictions

- Some theoretical predictions match with our measurements
- However they predict a lot of another states
- Further steps
 - measure J^{PC} for better understanding
 - collect more data to observe and resolve (may be) new states
 - investigate another final states ($\psi(2S)J/\psi$, YY, $J/\psi Y$, to be continued ...) ¹⁴

Summary

- Using a data sample corresponding to an integrated luminosity of 135 fb⁻¹ of pp collisions collected by the CMS experiment at $\sqrt{s} = 13$ TeV in 2016-2018, rich resonance structure was observed.
- Masses and widths in non-interference model were determined to be:

 $M[BW1] = 6552 \pm 10 \pm 12 \text{ MeV}; \Gamma[BW1] = 124^{+32}_{-26} \pm 33 \text{ MeV}$ $M[BW2] = 6927 \pm 9 \pm 4 \text{ MeV}; \quad \Gamma[BW2] = 122^{+24}_{-21} \pm 18 \text{ MeV}$ $M[BW3] = 7287^{+20}_{-18} \pm 5 \text{ MeV}; \quad \Gamma[BW3] = 95^{+59}_{-40} \pm 19 \text{ MeV}$ Observation (>5.7 σ) Observation (>9.4 σ) Evidence (>4.1 σ)

• In interference case masses and widths were determined to be:

$$\begin{split} M[BW1] &= 6638^{+43+16}_{-38-31} \text{ MeV}; \ \Gamma[BW1] = 440^{+230+110}_{-200-240} \text{ MeV} \\ M[BW2] &= 6847^{+44+48}_{-28-20} \text{ MeV}; \ \Gamma[BW2] = 191^{+66+25}_{-49-17} \text{ MeV} \\ M[BW3] &= 7134^{+48+41}_{-25-15} \text{ MeV}; \ \Gamma[BW3] = 97^{+40+29}_{-29-26} \text{ MeV} \end{split}$$

- All states are candidates in fully-charmed tetraquarks
- Need more data and further studies for better understanding of exotic nature

Thank you for attention!

Back up

Comparison with LHCb and ATLAS

CMS vs LHCb

- 135/9 ~ 15X (int. luminosity)
- $(5/3)^4 \sim \frac{8X}{1000}$ (muon acceptance)
- Higher muon p_T (> 3.5 or 2.0 GeV vs > 0.6 GeV)
- Similar number of $J/\psi J/\psi$ candidates, but significantly less NRDPS yield
- 2X yield for X(6900)

CMS vs ATLAS

- ATLAS has 1/3-1/2 of CMS data
- ATLAS used dR cut removed higher mass region
- CMS has slightly better resolution

LHCb model I (3 BW, no interference)

 $pdf(m) = \sum_{i} N_i(|BW_i(m;m_i,\Gamma_i)|^2 \otimes R(m_i)) + N_{NRSPS} \cdot pdf_{NRSPS}(m,p_2) + N_{DPS} \cdot pdf_{DPS}(m),$

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886 \pm 11 \pm 11$	$168\pm33\pm69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

- X(6900) parameters are consistent
 - The model poorly describes the dips and ~7300 MeV region