Study of the process $e^+e^- \rightarrow K_S K_L$ in the center-of-mass energy range 1.05 - 2.0 GeV with the CMD-3 Detector at VEPP-2000 collider

Nikita Petrov **Budker Institute of Nuclear Physics**

Outline

- Motivation
- Experimental setup & Data • Analysis
 - Cross section
- Conclusion

$e^+e^- \rightarrow K_S K_L$ 1.05 < \sqrt{s} < 2 GeV

Motivation

Get the cross section of the $e^+e^- \rightarrow K_SK_L$ process Study of the excited states of the vector mesons Take into account contribution in $e^+e^- \rightarrow$ hadrons for anomalous muon magnetic moment

CMD-3 detector and VEPP-2000 collider

Scheme of the CMD-3 detector^[1]

[1] <u>Fedotovich, G. (2006). CMD-3 detector for VEPP-2000.</u>
<u>Nucl. Phys. B Proc. Suppl., 162, 332–338.</u>
[2] <u>Shatunov, P., et al. (2016). Status and perspectives of the VEPP-2000. Phys. Part. Nucl. Lett., 13(7), 995–1001.</u>

VEPP-2000 collider^[2]

Round beam concept Beam energy range: 200–1000 MeV Luminosity: 10³² cm⁻² s⁻¹

Data

Experimental data

	L, pb ⁻¹	√s range, GeV	Npoints
2011	20	1.05-2.0	40
2012	13	1.28-2.0	16
2017	44	1.28-1.96	32
2019	63	1.07-1.98	43
2020	47	1.87-1.94	5
2021	48	1.94-2.01	4
Total	233	1.05-2.01	140

Monte-Carlo data

20 000 events of the signal process per energy point

500k events per energy point to estimate physical background

Analysis principles π^{-} π^+ $c\tau (K_{s}) \approx 2.68 \text{ cm}$ e^+ K_L is not detected cτ (K_L) ≈ 15.34 m

Method

- 1. Find out 2 tracks corresponding to π^{\pm}
- 2. Check that these tracks are from K_s decay

```
e^+e^- \rightarrow K_S K_L events are detected with
  K_{s} \rightarrow \pi^{+}\pi^{-} decay (Br ~ 70%)
```


Event selection

2 tracks: $n_{hits} > 6, \chi^2_{r/z} < 25$ ionization losses like π^{\pm} $L(K_{s}) > 0.15 \text{ cm} (r-\phi \text{ plane})$ $0.5 < \theta (K_s) < \pi - 0.5 rad$ $\cos \alpha^* > 0.8$ appropriate K_s decay space angle

Events number

2D fit of the K_s momentum vs K_s invariant mass distribution

signal and background shapes were fixed from Monte-Carlo

an example of the fit of the experimental data 2021, √s = 2.0 GeV

Detection efficiency

Radiative corrections

Radiative correction vs center-of-mass energy

[*] <u>Kuraev, E., & Fadin, V. (1985). Calculation of radiative corrections to the cross-section</u> of one photon annihilation by means of structure functions. Sov. J. Nucl. Phys. 41

Radiative corrections were calculated with structure functions by Kuraev and Fadin^[*]

$$\frac{N_{sig}}{L} = \int_0^1 dx \, \sigma_b(s[1-x]) \varepsilon(x,s) F(x,s) F(x$$

2.0

Cross sections

11/12

 $= \frac{N_{sig}}{L\varepsilon(1+\delta)}$

 σ

Conclusion

• cross section of the $e^+e^- \rightarrow K_S K_L$ process has been measured in the center-of-mass energy range 1.05 - 2.0 GeV with integrated luminosity of 233 pb⁻¹

systematic uncertainties need to be accurately accounted for

Thanks for attention!

