

TWENTY-FIRST LOMONOSOV CONFERENCE August, 24-30, 2023 ON ELEMENTARY PARTICLE PHYSICS MOSCOW STATE UNIVERSITY

Overview of the Recent Results of the CMS Experiment

Sergei Shmatov (JINR, Dubna) on behalf of the CMS Collaboration

shmatov@cern.ch shmatov@jinr.ru

CMS Overview

The CMS experiment has members from 255 institutes coming from 57 countries

https://cms.cern/ https://cms-info.web.cern.ch/

Moscow State University, Moscow, 26 August, 2023

Some Statistics from CMS

This talk are summarized the selected (by me) the recent CMS Results results (the SM, Higgs physics and BSM)

LHCP2023, 22-27 May, Belgrad, EPS-HEP2023, 21-25 Aug 2023, Hamburg <u>Recent CMS Briefings</u>

Lomonosov2023 talks with the CMS Results

QCD and Heavy lons

Olga Kodolova, QCD physics with CMS detector Serguei Petrushanko, Latest results on heavy-ion physics.. D.Myagkov (MSU) Azimuthal anisotropy in Xe–Xe and Pb–Pb collisions..

Standard Model

Nikita Petrov, New resonances in J/psi J/psi mass spectrum at CMS Kirill Ivanov, CMS results on heavy flavour spectroscopy and production Ruslan Chistov, Searches for lepton flavour / universality violation at CMS Maksim Sergeev, Recent CMS results on rare heavy flavour decays Itana Bubanja, Inclusive production of vector bosons in CMS

Beyond the Standard Model Maria Savina, Dark Matter Search at the LHC

CMS Publications Page

https://cms-results.web.cern.ch/cms-results/publicresults/publications/

CMS Public Results (newest)

https://cms-results-search.web.cern.ch/

Sergei Shmatov, Lomonosov 2023

http://cern.ch/cms-results/public-

35% of Standard Model (SMP/FSQ/BPH/TOP) 14% of Higgs Physics 36% of BSM Physics (EXO/B2G/SUSY) 11% of Heavy Ion

LHC Timeline and Data That We Have

https://twiki.cern.ch/twiki/bin/view/CMSPubl ic/LumiPublicResults

CMS Luminosity Information

 pPb and PbPb Runs (see talk by Serguei Petrushanko) Sergei Shmatov, Lomonosov 2023 25.08.2023

CMS Detectors in RUN3

BEAM PIPE

Replaced with an entirely new one compatible with the future tracker upgrade for HL-LHC, improving the vacuum and reducing activation.

HADRON

calorimeter.

CALORIMETER

and improve energy

measurement in the

New on-detector electronics

installed to reduce noise

PIXEL TRACKER All-new innermost barrel pixel layer, in addition to maintenance and repair work and other upgrades.

BRIL New generation of detectors for monitoring LHC beam conditions and luminosity.

CATHODE STRIP CHAMBERS (CSC) Read-out electronics upgraded on all the 180 CSC muon chambers allowing performance to be maintained in HL-LHC conditions.

GAS ELECTRON MULTIPLIER (GEM)

DETECTORS An entire new station of detectors installed in the endcap-muon system to provide precise muon tracking despite CMS Preliminary 2022 rates of HL-LHC ŝ

efficien

Ξ

0.99

From tests in 2022, we gained an understanding of the impact on tracker efficiencies at high instantaneous luminosity

SOLENOID MAGNET

New powering system to

prevent full power cycles

in the event of powering

time for physics during

the magnet lifetime.

collisions and extending

problems, saving valuable

- Strip Tracker shows linear continuation at higher luminosities,

-Pixel Layer 1 well behaved up to design luminosity of 2 x 10^{34} .

Sergei Shmatov, Lomonosov 2023

10000

Completion of the Phase 1 upgrades and start of the Phase 2 upgrades.

> Phase 1: HCAL barrel readout, new barrel inner pixel (layer 1)

> Phase 2: First of GEM chambers installed, upgraded CSC electronics for HL-LHC, new beam pipe.

added GPUs to the HLT nodes.

Demonstrator for Phase 2 muon drift tube electronics and Beam Radiation, Instrumentation and Luminosity (BRIL) demonstrators installed.

L. Silvestris LHCP 2023

Physics of the Standard Model

High rate at the LHC

- ✓ Provides statistic to study inclusive and differential distributions
- Good understanding of the detectors allow for precision measurements
- Test p-QCD and PDF in different regimes, deviations may indicate presence of new physics, EFT interpretations
- ✓ Developments and testing of new MC generators and techniques

Summary of Standard Model Tests with EWK Bosons

Summaries of CMS cross section measurements https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

plots are updated for Summer 2023 conferences

Sergei Shmatov, Lomonosov 2023

25.08.2023

W and Z Production Cross Sections

∧a9 10⁶

Events / 0

10⁴

10³

10²

CMS

Preliminarv

Total syst. unc.

Data

EWK

Z→ μ⁺μ

The first measurement of the Z boson production cross section in proton-proton collisions at 13.6 TeV 5.04 fb⁻¹ (13.6 TeV)

- dimuon final states are studied in data samples collected with the CMS detector corresponding to integrated luminosity of 5.04 \pm 0.12 fb⁻¹
- the measured product of the total cross section and branching fraction for the invariant dimuon mass in the range 60 to 120 GeV $\sigma_{z}(Z \rightarrow \mu\mu) = 2.010 \pm 0.001(\text{stat}) \pm 0.018(\text{syst}) \pm 0.046(\text{lumi}) \pm$ 0.007(theo) nb
- well in agreement with theoretical calculations. CMS-PAS-SMP-22-017

W and Z cross sections at 5.02 and 13 TeV

⁷

Multi-boson Recent Results

 W^{\pm}

First observation of WWy production

-0.56

10

10 Pred.

Data

Pul

First study of a VBS process (same-sign WW)

The variables used as input to the DNN model are listed below:

- VBS jet pair invariant mass *M_{ii}*;
- transverse mass $M_T(\ell, \vec{p}_T^{\text{miss}})$;
- transverse mass M_{1T} ;
- transverse mass M_{01} ;
- *p*_T of leading VBS jet;
- *p*_T of subleading VBS jet;
- p_T of τ_h ;
- p_T of ℓ ;
- ratio of p_T of the leading track of the jet associated with τ_h to the $\tau_h p_T$.

 $\mu_{ssWW} = 1.44^{+0.63}$

2.7 (1.9) σ

Sergei Shmatov, Lomonosov 2023

Summary of HLO Strinjent Tests

Summary of the cross sections standard model particles produced in association with jets https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

QCD Jets

Sergei Shmatov, Lomonosov 2023

see talk by Olga Kodolova for details

Top Quark Production Cross Section

Summary of production cross sections involving top quarks

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsR esultsCombined

First measurement of the top quark pair production cross section in proton-proton collisions at 13.6 TeV

 σ (tt) = 882 ±± 23 (stat+syst) ± 20 (lumi) pb 1.21 fb-1, dilepton and lepton + jets channels

Top Quark: The Recent Results

Rare Decays and LFUV Tests

13

Higgs Physics

4 July 2012

Higgs announcement at CERN

	Int. Luminosity at 7, 8 TeV	mH [GeV]	Expected [st. dev.]	Observed [st. dev.]
ATLAS	10.7 fb ⁻¹	126.0 ± 0.6	4.6	5.0
CMS	10.4 fb ⁻¹	125.3 ± 0.6	5.9	4.9

to discovery

From design

Rare Higgs Decay $h \rightarrow \mu\mu$

First evidence of the coupling of the Higgs boson with fermions of the second generation

JHEP 01 (2021) 148

$H \rightarrow \mu\mu$ candidate in gluon fusion channel, m_{H} = 125.46 \pm 1.13 GeV

Drell-Yan background considerably reduced by VBF topology requirement (two forward jets)

Rare Higgs Decays $h \rightarrow Z\gamma//VBF h \rightarrow bb/h \rightarrow e\mu/h \rightarrow cc$

비 전 전 전 전

12

Measure VBF and ggF production simultaneously with $H \rightarrow bb$ Evidence of $H \rightarrow Zy$ decays CMS-PAS-HIG-23-002 Using boosted Higgs decays since the relative contribution to Higgs CMS + ATLAS combined evidence: observed 3.4σ (expected 1.6σ) Florencia Canelli cross-section from qqF decreases with p_T^H Search for lepton flavor violating $H \rightarrow e\mu$ decays **CMS** Preliminary 138 fb⁻¹ (13 TeV) In 110 – 160 GeV mass region of a eµ pair Best fit Observed (expected) upper limit on BR is 4.4 (4.7) \times 10⁻⁵ at 95% CL SM expected Most stringent limit from direct searches CMS-PAS-HIG-22-002 EPS-HEP Conference 138 fb⁻¹ (13 TeV) August 22, 2023 Measure highly Lorentzdo_{fid}/dp_⊤(H) (fb/GeV) CMS Ŧ Observed gg→H (POWHEG) + XH Preliminar 10-2 boosted $H \rightarrow \tau \tau$ events aa→H (NNLOPS) + XH µ_{VBF}=5.0^{+2.1} -1.8 Using dedicated 10algorithms to resolve 3.0 σ (0.9σ) overlapping τ_s the signal 10 with $p_T^H > 250$ GeV is 10observed (expected) 3.5 The observed signal -4 (2.2) σ strengths and 10 $\mu_{ggF} = 2.1^{+1.9}_{-1.7}$ Ratio to NNLOPS corresponding CMS-PAS-HIG-21-017 1.2 σ (0.9 σ) observed (expected) significances 1000 1500 2000

CMS-PAS-HIG-21-020

Probes and searches seen today:

- $H \rightarrow cc$: most stringent limits on κ_c to date
- **H** $\rightarrow \mu\mu$: 3.0 std dev evidence of the decay
- $H \rightarrow ZJ/\Psi$ and $H \rightarrow J/\Psi J/\Psi, \Upsilon\Upsilon$: clean 4 ℓ final state and upper limits on \mathcal{B}
- $H \rightarrow Z\gamma$: CMS+ATLAS combination showing evidence of 3.4 std dev
- H γ production: limits on all $\kappa_u, \kappa_d, \kappa_s, \kappa_c$
- In general, no significant discrepancy w.r.t. the SM prediction until now

Higgs decays and high p_{τ} are particularly sensitive to BSM \rightarrow these results provide an important step forward in the exploration of the Higgs boson and its interactions

p_T^H (GeV)

H decay to cc [Phys. Rev. Lett. 131 (2023) 061801, 041801]

Upper limits on \mathcal{B} set at 95% CL:

- $\mu_{VH(H \to cc)} = 14 \ (7.6^{+3.4}_{-2.3})$ the SM prediction
- $1.1 < |\kappa_c| < 5.5$ ($|\kappa_c| < 3.4$)
- Most stringent constraint on κ_c to date

R. Ardino **EPS-HEP 2023**

Higgs Inclusive and Differential Cross Sections

Differential cross sections

Search for pair-production of Higgs

138 fb⁻¹ (13 TeV)

10

25.08.2023

Kov

https://twiki.cern.ch/twiki/bin/view/ CMSPublic/SummaryResultsHIG

Sergei Shmatov, Lomonosov 2023

19

Higgs Portrait after 10 Years

During Run 2 of the LHC the experimental collaborations started to employ the combined data for precision measurements of Higgs properties (mass, width, couplings, CP, rare decays)

- All main production mechanisms are observed, including $h \rightarrow bbar$, ttH, VH
- Mass of Higgs boson m_h is measured with an accuracy of 0.1% (!)

Data recorded: 2017-Aug-20 18:16:5.926208 GMT Run / Event / LS: 301472 / 634226645 / 664

- Precisions of cross section and branching ratio measurements in combined channel are down to 8.5% level
- We have ~6-30% accuracy for measurements of couplings
- The absolute value of a width $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7}$ MeV is getting closer to the SM expectations (4.1 MeV). We still need to improve an accuracy.
- Spin, parity, differential distributions do not contradict the SM Nature 607 (2022) 60-68 25.08.2023

Physics beyond the SM

SUSY

BSM Analyses in the CMS Collaboration

- Direct Searches for the Physics Beyond the SM
 - Conventional Signals, such as new resonances in dileptons/diphotons/ dijets spectra or non-resonant signals, combinations of physics objects (leptons/photons/jets) and MET/ b/t-jets tags, high-multiplicity events, etc

Extra Dimensions

Extended Gauge Sector

LQ/CI/Excited Fermions/B3G

on-conventional Signals, for example displaced vertices/leptons/lepton-jets/dileptons from Long-Lived Particles or emerging jets/leptons from boosted heavy objects, $m \ll p_T$ (i.e. high-p_T Z/W/h₁₂₅ bosons)

Long-Lived Particles (Dark Matter/Non-standard SUSY/Neutrino Masses/etc)

Extended Higgs and Dark Matter Sectors

- **BSM-Higgs Physics**
 - ✓ Searches for the new Higgs states (from extended Higgs sector including SUSY)
 - Probes for the New Physics with h₁₂₅ (Higgs as a tool for new discovery) \checkmark

Extra Higgses, Dark Matter, Flavour Universality Violation

- Check for discrepancies with data and search for new physics via Effective Field Theory $L = L_{SM}^{(4)} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda_{i}} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$
- Precision Tests of SM
 - Measurements of the W/Z, Drell-Yan (+ n jets) x-sections and angular characteristics \checkmark
 - Search for rare decays of B-mesons \checkmark
 - Observations of other rare process in top sector within SM (Wtb couplings, CP violating top quark \checkmark couplings, flavor-changing neutral current interactions of the t-quark and h_{125})

Direct Search for BSM: Conventional Signals

August 2023

CMS Preliminary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

Example of Dark Matter Searches in Dijets+Dileptons

ga

V/VA

 $Z'_{V/A}$

ga

We consider a model that assumes the existence of a single DM particle that interacts with the SM particles through a spin-1 mediator, which can be either a vector or axial-vector boson.

- vector mediator with small couplings to leptons, g_{DM} = 1.0, g_q = 0.1, g_l = 0.01
- axial-vector mediator with equal couplings to quark and leptons: $g_{DM} = 1.0$, $g_q = g_l = 0.1$

Higgs Boson as a Tool to Search for the New Physics

prediction

Data /

500

+ B-only fit + S+B fit W Bkg. uncertainty

1000 1500 2000 2500 3000

m_{ii} (GeV)

Higgs Invisible Decays

The expected in SM h_{125} the branching fraction $h_{125} \rightarrow inv$ $\mathcal{B}(h_{125} \rightarrow ZZ^* \rightarrow 4v) = 0.12\%$

Several BSM scenarios predict anomalous and sizeable values, \mathcal{B} is significantly enhanced

a simple extension of the SM to provide a Dark Matter (DM) candidate and are able to predict the observed relic DM density vis s-channel $\chi \chi \to f \bar{f}$

10² Low-mass region in the spin-independent dark-matter-nucleon scattering cross section

2017

4000 4500

3500

0.2

0.1

C

2012 - 2016

95% CL

2018

Combination

 0^{-43}

10-4

10-

 m_{DM} (GeV)

Cresst-II

Lepton Flavour Violation Higgs Decays (1)

The decays $H \rightarrow e\mu/\mu\tau/e\tau$ trough the LFV Yukawa couplings arising in two Higgs doublet models, extra dimensions, models with flavor symmetries, models of compositeness, etc

- to verify h_{125} hypothesis, $m_{ll} = m_{h_{125}}$ (type 1)
- to search for new higgs states, $m_{ll} \neq m_{h_{125}} \Rightarrow$ broad invariant mass region (type 2)

Lepton Flavour Violation Higgs Decays (2)

35.9 fb⁻¹ (13 TeV)

LFV $H \rightarrow e\tau$

Observed

CMS

The first direct search for LFV $H \rightarrow \mu \tau / e \tau$ decays for an Extra Higgs mass in the range $200 \ GeV < m_H < 900 \ GeV$ (neutral heavy Higgs boson)

type 2, ggH, T lepton decay products are highly boosted

25.08.2023

Searches for Low-Mass BSM Higgses/DM in h₁₂₅ Decays

If $m_H > 2m_X$, some BSM scenarios allow Higgs bosons decays via one or two hypothetical on-shell new (pseudo)scalar(s) decaying to a pair of SM particles.

0.6

0.8

Sergei Shmatov, Lomonosov 2023

0.2

Upper bound provided

by SM $H \rightarrow \gamma \gamma$

1.2

m₄ [GeV]

CMS PAS HIG-21-016

U (1) is broken by a hiddensector Higgs mechanism

Extended Higgs sector ex. 2HDM, 2HDM+ 30

BSM Higgs/V' in Decays into h₁₂₅(+X)

If $m_H < 2m_X$, the finals states are possible with h_{125} and SM gauge bosons

Sergei Shmatov, Lomonosov 2023

Direct Search for BSM: LLP Non-conventional Signals

- a proper lifetime cτ₀ is greater than or comparable to the characteristic size of the (sub)detectors
- small cτ₀ that comparable to the inner tracker size, no displaced tracks → "standard" prompt decay
- intermediate $c\tau_0 \rightarrow LLP$
- very large/infinite large cτ₀ → stable particles, "standard" MET signatures

SUSY RPV

SUSY RPC

Higgs+Other

UDD, $\ddot{q} \rightarrow tbs$, $m_{\ddot{q}} = 2500 \text{ GeV}$

UDD, $\ddot{a} \rightarrow tbs$, $m_{\ddot{a}} = 2500 \text{ GeV}$

UDD, $\ddot{t} \rightarrow dd$, $m_{\tilde{t}} = 1600 \text{ GeV}$

UDD, $t \rightarrow \overline{dd}$, $m_{\tilde{t}} = 1600 \text{ GeV}$

LOD, $\tilde{t} \rightarrow bl$, $m_{\tilde{t}} = 600 \text{ GeV}$

LOD, $\tilde{t} \rightarrow bl$, $m_{\tilde{t}} = 460 \text{ GeV}$

LOD, $t \rightarrow bl$, m = 1600 GeVGMSB, $\tilde{g} \rightarrow g\tilde{G}$, $m_d = 2450 \text{ GeV}$

GMSB, $\ddot{a} \rightarrow a\ddot{G}$, $m_d = 2100 \text{ GeV}$

Overview of CMS Exotica LLP Searches

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The v-axis tick labels indicate the studied long-lived particle.

More results: http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/LLP.html

Sergei Shmatov, Lomonosov 2023

25.08.2023

Displaced Jets

Jet 1

disappearing of

kinked tracks

10⁶ 10⁷

 $c\tau_{s}$ [mm]

displaced

- the dark sector particles continue traveling for a long time and traverse several meters (Long-Lived Particles) before tunneling back into our visible universe (quarks or leptons)
- the Higgs is likely to be one of the candidates for a messenger role

23

This exciting tool opens up a new program of searches for LLP in a wide variety of theoretical models

 10^{3}

 10^{4}

 10^{5}

10²

10

Displaced Dimuons

3 $\Delta \Phi$

No significant excess of events above the standard model background is observed. The results are interpreted as limits on the parameters of a these two models

 10^{-2}

Sergei Shmatov, Lomonosov 2023

25.08.2023

10⁵ ct [cm]

The CMS Phase 2 Upgrade

Summary

Extensive searches for the New Physics are performed with CMS experiment on RUN1 and RUN2 data

- 582 papers with RUN1 data and 627 papers with RUN2 data
- 1 paper with RUN3
- The tricks of the RUN2/RUN3 are (procedure was updated during LS2 and will be improved further)
 - Higgs boson is intensively involved in searches
 - Non-conventional signals
- Many new analyses made public
 - for Summer Conferences, <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/CMS/index.html</u>
 - Physics Briefings at: <u>https://cms.cern/tags/physics-briefing</u>
- Phase 2 Upgrades
- excellent progress in all projects
- all Technical Design Reports prepared
- more physics projections for HL-LHC starting to appear

CMS titles

- 599 "Search"
- 48 "Observation"
- 21 "Evidence"
- 333 "Measurement"
- 42 "Study"

THANK YOU FOR YOUR ATTENTION!

Some Selected Excitements

RUN3 is a perfect judge for these challenges!

Sergei Shmatov, Lomonosov 2023

25.08.2023