Latest results and precision measurements from the NA62 experiment

Baigarashev Dosbol (JINR)

on behalf of the NA62 Collaboration

21th Lomonosov Conference

Moscow (RU), August 26, 2023

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Outline

- > Measurement of the ultra rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ process [JHEP 06 (2021) 093]
- > Precision measurements of the rare decays:
- $K^+ \to \pi^+ \mu^+ \mu^-$ [JHEP 11 (2022) 011]
- $K^+ \rightarrow \pi^+ \gamma \gamma$ [preliminary]
- Searches for *LFV/LNV* processes: [PLB 797 (2019) 134794], [PRL 127 (2021) 13, 131802], [PLB 830 (2022) 137172], [PLB838 (2023) 137679]
- > Dark photon searches (2021 data): $A \rightarrow \mu^+ \mu$ [preliminary]

The NA62 experiment @CERN

- > High precision fixed-target Kaon experiment at the CERN SPS
- ▶ Main goal: $\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay measurement
- Broad physics program:
- Other rare charged kaon decays
- Precision measurements
- LFV/LNV searches
- Exotic searches (FIPs, Dark photon, etc...)

The CERN accelerator complex Complexe des accélérateurs du CERN

► H⁺ (hydrogen anions) → p (protons) → ions → RIBs (Radioactive Ion Beams) → n (neutrons) → p (antiprotons) → e (electrons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

- > 2008: NA62 Approval
- > 2014: NA62 Pilot Run (partial layout)
- > 2015: Commissioning run
- > 2016-18: NA62 RUN 1 data-taking completed
- > 2021+: NA62 RUN 2 ongoing

The NA62 experimental apparatus

>Upstream detectors (K⁺)

KTAG: Differential Cherenkov counter for K⁺ ID GTK: Silicon pixel beam tracker CHANTI: Anti-counter against inealstic beam-GTK interactions

>Downstream detectors (π^+)

STRAW: track momentum spectrometer CHOD: scintilator hodoscopes LKr/MUV1,2: calorimeter system RICH: Cherenkov counter for $\pi/\mu/e$ ID

Measurement of the ultra rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ process

[JHEP 06 (2021) 093]

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: a golden decay mode

- > Ultra rare FCNC: $s \rightarrow d$ transition sensitive to the CKM structure of the SM: *tree-level FCNCs forbidden* ⇒ *loop* + *CKM suppression*
- > Theoretically clean process: *dominated by short-distance physics (SD)*
- > K⁺ π^+ Form Factor (FF) extracted from K[±] $\rightarrow \pi^0 l^{\pm} v_l$: sub-% precision
- > Sensitive to new physics in the lepton sector as well: *involves* v_e , v_μ and v_τ
- **>** Extremely rare process in the SM:
 - BR_{SM}(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) = (7.73 ± 0.16_{SD} ± 0.25_{LD} ± 0.54_{param}) x 10⁻¹¹ [arXiv: 2105.02868]</sup>
 - BR_{SM}(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}) = (7.92 \pm 0.28_{\text{theory}}) \times 10^{-11} \times \left[\frac{|V_{cb}|}{41.0 \times 10^{-3}}\right]^{2.8} \times \left[\frac{\sin \gamma}{\sin 67^{\circ}}\right]^{1.39} \text{ [arXiv:2109:11032]}$

Analysis strategy $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$

Decay-in-flight

 P_{K^+}

- > Highly boosted decay: K^+ (75 ± 1) GeV/c
- Large undetectable missing energy carried away by the neutrinos

 π^+

- > All energy from visible particles must be detected
- > π^+ momentum range 15 45 GeV/c (E_{miss.} > 30 GeV)
- Hermetic detector coverage and O(100%) detector efficiency needed
- > Blind analysis using Control Regions (CR)

- > Requirements on background rejection:
- $O(10^4)$ suppression from kinematic conditions
- $O(10^7)$ from μ^+ rejection
- $O(10^7)$ from π^0 rejection
- O(100 ps) timing between sub-detectors

away oy

Results NA62 Run 1 (2016-18)

^{3.4} σ significance

Precision measurement of the rare $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $K^+ \rightarrow \pi^+ \gamma \gamma$ processes

[JHEP 11 (2022) 011], [JHEP 06 (2023) 040], preliminary, arXiv: 2304.12271

$$K^+ \rightarrow \pi^+ \mu^+ \mu^-$$
 decays

- > Heavily suppressed FCNC transition: $s \rightarrow dl^+ l^-$
- > FCNC decay described in the scope of ChPT, mediated by one photon exchange $K^{\pm} \rightarrow \pi^{\pm} \gamma^{*}$
- > Mainly kinematic variable: $z = \frac{m^2(l^+l^-)}{m_K^2}$
- > Chiral Perturbation Theory (ChPT) parametrization of W(z) at $O(p^6)$: $W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$

Main goals of the $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurements with NA62:

- > Model-independent measurement of the B($K\pi\mu\mu$) branching fraction
- > Measurement of the function $|W(z)|^2$
- Determine the Form Factor parameters a₊ and b₊
- Forward backward assymetry

After signal selection:

 $N_{obs} = 27679$ events $N_{bg}^{exp} = 8$ events

 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays: Results

[JHEP 11 (2022) 011]

@ 90% *CL upper limit** UL published as addendum [JHEP 06 (2023) 040]

 $K^+ \rightarrow \pi^+ \gamma \gamma$ decays

> Rare decay that allows ChPT tests at $O(p^6)$

> Main kinematic variable: $z = \frac{m^2(\gamma\gamma)}{m_K^2}$, $y = \frac{P_K(Q\gamma_1 - Q\gamma_2)}{m_K^2}$

> BR($K^+ \rightarrow \pi^+ \gamma \gamma$) at $O(p^6)$ parametrized by a real parameter \hat{c}

Main background:

Cluster merging in

the EM calorimeter

 $N_{obs} = 4039$ events

After signal selection:

 $N_{bq}^{exp} = 393 \pm 20$ events

NA62 Preliminarv E787 (1997) 31 events NA48/2 (2014) 149 events NA62-2007 (2014) 232 events NA48/2 + NA62-2007 (2014) 381 events NA62 (2022) - this result 4039 events 10 13 6 7 8 9 12 11 $Br(K^+ \rightarrow \pi^+ \gamma \gamma) \times 10^7$ $B_{\pi\nu\nu} = (9.73 \pm 0.17_{stat} \pm 0.08_{svst}) \times 10^{-1}$

NA62 Preliminary E787 (1997) 31 évents NA48/2 (2014) 149 events NA62-2007 (2014) 232 events NA48/2 + NA62-2007 (2014) 381 events NA62 (2022) - this result 4039 events 0.5 1.5 2 ChPT O(p⁶) c $\hat{c} = 1.713 \pm 0.075_{stat} \pm 0.037_{syst}$

Searches for Lepton Flavor and Lepton Number Violating (LFV/LNV) processes with NA62

[PLB 797 (2019) 134794], [PRL 127 (2021) 13, 131802], [PLB 830 (2022) 137172], [PLB 838 (2023) 137679]

LFV/LNV searches

Theory: Violation of Lepton Number (LNV) and Lepton Flavor (LFV) conservation laws predicted in BSM models

(for example via Majorana neutrinos or leptoquark)

- > NA62: several channels studied with RUN1 data
- ➤ Analysis: key points → tracking resolution and particle identification
- ➤ Result: no signal observed → 90% CL Upper Limit (UL) on Branching Ratios (BR)

Decay channel	BR UL PDG 2019	BR UL NA62	Expected background	Observed	Improvement (by factor)
$K^+ ightarrow \pi^- \mu^+ e^+$	50 x 10 ⁻¹¹	4.2 x 10 ⁻¹¹	1.07 ± 0.20	0	12
$K^+ \to \pi^+ \mu^- e^+$	52 x 10 ⁻¹¹	6.6 x 10 ⁻¹¹	0.92 ± 0.34	2	8
$\pi^0 ightarrow \mu^- e^+$	34 x 10 ⁻¹⁰	3.2 x 10 ⁻¹⁰	0.23 ± 0.15	0	11
$K^+ ightarrow \pi^- \mu^+ \mu^+$	8.6 x 10 ⁻¹¹	4.2 x 10 ⁻¹¹	0.91 ± 0.41	1	2
${\rm K^+} ightarrow \pi^- {\rm e^+} {\rm e^+}$	64 x 10 ⁻¹¹	5.3 x 10 ⁻¹¹	0.43 ± 0.09	0	12
$K^+ ightarrow \pi^- \pi^0 e^+ e^+$	N/A	8.5 x 10 ⁻¹⁰	0.044 ± 0.020	0	
$K^+ \rightarrow \mu^- \nu e^+ e^+$	N/A	8.1 x 10 ⁻¹¹	0.26 ± 0.04	0	

Dark photon searches (2021 data): $A \rightarrow \mu^+ \mu^-$

[preliminary]

Dark photon searches: $A \rightarrow \mu^+ \mu^-$

- Feebly interacting dark photon with free mass and coupling ϵ
- Beam dump mode: 3.2 m Cu-Fe collimators (TAX) used as a target
- Search for dark photon production in interaction with TAXs
- $(1.4 \pm 0.28) \ge 10^{17}$ POT collected in ~10 days in 2021

10-

10-

 10^{-}

10-6

10-7

ω

90% CL UL NA62 $A' \rightarrow \mu\mu$, obs.

Past experiments

 $A' \rightarrow \mu\mu$, exp. $\pm 1\sigma$ $A' \rightarrow \mu\mu$, exp. $\pm 2\sigma$

Summary

Decay channel	Data set		
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	NA62 RUN 1	JHEP 06 (2021) 093	
$K^+ ightarrow \pi^+ \mu^+ \mu^-$	NA62 RUN 1	JHEP 11 (2022) 011 JHEP 06 (2023) 040	
${ m K}^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$	NA62 RUN 1	preliminary	
$K^+ \rightarrow \pi^- \mu^+ e^+$	NA62 RUN 1	PRL 127 (2021) 131802	
$K^+ \rightarrow \pi^+ \mu^- e^+$	NA62 RUN 1	PRL 127 (2021) 131802	
$\pi^0 ightarrow \mu^- e^+$	NA62 RUN 1	PRL 127 (2021) 131802	
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	NA62 RUN 1	PLB 797 (2019) 134794	
$K^+ \rightarrow \pi^- e^+ e^+$	NA62 RUN 1	PLB 830 (2022) 137172	Many results with the NA62 RU
$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$	NA62 RUN 1	PLB 830 (2022) 137172	First result from NA62 RUN 2
$K^+ \rightarrow \mu^- \nu e^+ e^+$	NA62 RUN 1	PLB838 (2023) 137679	
$A \to \mu^+ \mu^-$	NA62 2021 data	preliminary	

Kaon at CERN: Plans

NA62 RUN 2

- On-going: data taking foreseen at least until 2025 (included), +45-50% increase of intensity vs Run 1
- Hardware upgrades implemented mainly to improve on $\pi^+ \nu \bar{\nu}$
- Trigger upgrade to study new channels (e.g. $K \rightarrow \pi ee$)
- Continuing LNV/LFV and dark sector searches with K⁺
- A new measurement of V_{us}/V_{ud}
- Direct searches of new particles below the EW scale Data taking periods in dump mode (Dark sector, Axion/Scalar searches with $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$: UL $O(10^{-8})$)

Future of physics with kaons at CERN SPS

HIKE project under discussion at CERN: K^+ , K_L , dark sector searches Intensity x 4-6 with respect to NA62; Detectors with O(20 ps) time resolution; Similar experimental layouts

Physics program:

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ approaching SM theory expectation
- $K_L \rightarrow \pi^0 l^+ l^-$ observation and measurement of the BR
- LFUV tests with precision < %
- LFV LNV searches with $O(10^{-12})$ sensitivity
- Measurement of V_{us} and main kaon decay modes
- Dump physics in synergy with Shadows experiment

O(15%) final precision expected on BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$)

O(%) LFUV test x 2 lower UL (10⁻¹¹ sensitivity)

