Hadronic light by light contribution to the fine and hyperfine structure of mounic atoms

Fedor Martynenko (Samara University) V. I. Korobov, A. P. Martynenko, A. V. Eskin

21st Lomonosov Conference on Elementary Particle Physics Moscow State University

24-30 august 2023

Actuality

Precise study of muonic bound states energy levels is a direction of fundamental research, that can shed light on manifestations of new interactions of particles. Muonium represents such systems.

Theoretical prediction of ground state hyperfine structure of muonium is: (*M. Eides, Phys. Lett B 795, 113 (2019)*)

 $\nu_{hfs}^{theor}(1S) =$ 4463302872(515) *Hz*, $\delta = 1.3 \times 10^{-7}$

Most accurat experimental value of ground state hyperfine structure: (W. lin, M. G. Boshier, S. Dhawan, et al., Phys. Rev. Lett., 82, 711 (1999))

 $\nu_{hfs}^{exp}(1S) = 4463302765(53) Hz.$

Actuality

Precise study of muonic bound states energy levels is a direction of fundamental research, that can shed light on manifestations of new interactions of particles. Muonium represents such systems.

Theoretical prediction of ground state hyperfine structure of muonium is: (*M. Eides, Phys. Lett B 795, 113 (2019)*)

 $\nu_{hfs}^{theor}(1S) =$ 4463302872(515) *Hz*, $\delta = 1.3 \times 10^{-7}$

Most accurat experimental value of ground state hyperfine structure: (W. lin, M. G. Boshier, S. Dhawan, et al., Phys. Rev. Lett., 82, 711 (1999))

 $\nu_{hfs}^{exp}(1S) = 4463302765(53) Hz.$

New experiment

MuSEUM experiment (J-PARK): new ground state hyperfine structure measurement with an accuracy of 1 ppb (\sim 1Hz)

R. Iwai, M. Abe, S. Fukumura, et al., Jour. of Phys.: Conf. Ser 2462, 012019 (2023)

High precision measurements of HFS in muonium for a long time were considered as a test of the high precision QED and a source for precise values of the fine structure constant α and the muon-electron mass ratio m_{μ}/m_{e} .

イロト イヨト イヨト

High precision measurements of HFS in muonium for a long time were considered as a test of the high precision QED and a source for precise values of the fine structure constant α and the muon-electron mass ratio m_{μ}/m_{e} .

Our previous researches show that hadronic light by light contribution to the muonic hydrogen energy spectrum is significant:

- Dorokhov A. E. et al. The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen //Physics of Particles and Nuclei Letters. – 2017. – V. 14. – P. 857-864.
- Dorokhov A. E. et al. The contribution of axial-vector mesons to hyperfine structure of muonic hydrogen //Physics Letters B. – 2018. – V. 776. – P. 105-110.
- Dorokhov A. E. et al. The sigma-meson exchange contribution to the muonic hydrogen Lamb shift //EPJ Web of Conferences. – EDP Sciences, 2019. – V. 212. – P. 07003.
- Dorokhov A. E. et al. Tensor meson contribution to the Lamb shift and hyperfine splitting in muonic hydrogen //Journal of Physics: Conference Series. – IOP Publishing, 2020. – V. 1435. – N. 1. – P. 012004.

イロト 不得 トイヨト イヨト

э

3/14

One meson interaction

There are a lot of QED corrections of higher order in α , that can contribute the value ~ 1 Hz. In this work we study one of such contributions, connected with strong interaction.

Preliminary estimation of the contribution order

$$\Delta E\sim lpha^3 E_F\sim 1700$$
 Hz, $E_F=rac{8lpha^4\mu^3}{3m_em_\mu}$

Figure: Hadronic light-by-light scattering amplitudes with horizontal (a, b) and vertical (c) exchanges. Top and bottom lines corresponds to electron and muon respectively. Wavy line corresponds to the virtual photon. The bold dot denotes the form factor of the transition of two photons into a meson.

$\gamma^* + \gamma^* \rightarrow M$ vertex parametrization

Axial-vector meson (R. N. Cahn, Phys. Rev. D 35, 3342 (1987)):

$$T_{AV}^{\mu\nu\beta}(k_1,k_2) = 4\pi i\alpha\varepsilon_{\mu\nu\alpha\beta}(k_1^{\alpha}k_2^2 - k_2^{\alpha}k_1^2)A(t^2,k_1^2,k_2^2),$$

Scalar meson (M. K. Volkov, et al., Phys. Atom. Nucl. 73, 443 (2010)):

$$T_{5}^{\mu\nu}(t,k_{1},k_{2}) = 4\pi\alpha \bigg\{ A(t^{2},k_{1}^{2},k_{2}^{2})(g^{\mu\nu}(k_{1}\cdot k_{2}) - k_{1}^{\nu}k_{2}^{\mu}) + B(t^{2},k_{1}^{2},k_{2}^{2})(k_{2}^{\mu}k_{1}^{2} - k_{1}^{\mu}(k_{1}\cdot k_{2}))(k_{1}^{\nu}k_{2}^{2} - k_{2}^{\nu}(k_{1}\cdot k_{2}))\bigg\},$$

Pseudoscalar meson (V. Pauk and M. Vanderhaeghen, EPJ C 74, 3008 (2014)):

$$T_{PS}^{\mu\nu}(k_1,k_2) = i\varepsilon^{\mu\nu\alpha\beta}k_{1\alpha}k_{2\beta}\frac{\alpha}{\pi F_{\pi}}F_{\pi^0\gamma^*\gamma^*}(k_1^2,k_2^2),$$

Tensor meson (V. Pauk and M. Vanderhaeghen, EPJ C 74, 3008 (2014)):

$$\begin{split} T_T^{\mu\nu\alpha\beta}(k_1,k_2) &= 4\pi\alpha \frac{k_1k_2}{M_T} \mathcal{M}_{\mu\nu\alpha\beta}(k_1,k_2) \mathcal{F}_{T\gamma^*\gamma^*}(k_1^2,k_2^2),\\ \mathcal{M}_{\mu\nu\alpha\beta}(k_1,k_2) &= \left\{ R_{\mu\alpha}(k_1,k_2) R_{\nu\beta}(k_1,k_2) + \frac{1}{8(k_1+k_2)^2 \left[(k_1k_2)^2 - k_1^2 k_2^2 \right]} R_{\mu\nu}(k_1,k_2) \times \right. \\ \left. \left. \left. k_1 + k_2 \right)^2 (k_1 - k_2)_\alpha - (k_1^2 - k_2^2) (k_1 + k_2)_\alpha \right] \times \left[(k_1 + k_2)^2 (k_1 - k_2)_\beta - (k_1^2 - k_2^2) (k_1 + k_2)_\beta \right] \right\}, \end{split}$$

[(

Axial vector exchange. Vertical diagram

Interaction amplitude:

$$\begin{split} i\mathcal{M}_{AV}^{vert} &= \frac{\alpha^2(Z\alpha)^2}{16m_1^2m_2^2} \int \frac{d^4k}{\pi^2} \frac{A(t^2,k_1^2,k_2^2)}{(k^2)^2} \int \frac{d^4r}{\pi^2} \frac{A(t^2,r_1^2,r_2^2)}{(r^2)^2} \frac{\varepsilon_{\mu\nu\alpha\beta}(k_1^\alpha k_2^2 - k_2^\alpha k_1^2)}{(k^2 - 2k_0m_1)} \times \\ \frac{\varepsilon_{\sigma\lambda\rho\omega}(r_1^\rho r_2^2 - r_2^\rho r_1^2)}{(r^2 - 2r_0m_2)} \Big[\bar{u}(0)(\hat{q}_1 + m_1)\gamma^{\nu}(\hat{p}_1 - \hat{k} + m_1)\gamma^{\mu}(\hat{p}_1 + m_1)u(0) \Big] \Big[\bar{v}(0)(\hat{p}_2 - m_2) \times \\ \gamma^{\sigma}(\hat{r}_1 - p_2 + m_2)\gamma^{\lambda}(\hat{q}_2 - m_2)v(0) \Big] D^{\beta\omega}(t), \end{split}$$

• The projection operators are constructed from the wave functions of the particles in their rest frame:

$$\hat{\Pi}_{S=0} = [u(0)\bar{v}(0)]_{S=0} = \frac{(1+\gamma^0)}{2\sqrt{2}}\gamma_5, \quad \hat{\Pi}_{S=1} = [u(0)\bar{v}(0)]_{S=1} = \frac{(1+\gamma^0)}{2\sqrt{2}}\hat{\varepsilon}.$$

Trace calculation in package FORM in leading order gives:

$$N_{AV}^{vert} = \frac{1}{3}k^2r^2\mathbf{k}^2\mathbf{r}^2$$

• We use the dipole parametrization for transition form factor:

$$A(t^{2}, k_{1}^{2}, k_{2}^{2}) = A(t^{2}, 0, 0) \frac{1}{(1 - \frac{k_{1}^{2}}{\Lambda})(1 - \frac{k_{2}^{2}}{\Lambda})}, \quad A(t^{2}, 0, 0) = A(M^{2}, 0, 0)e^{(t^{2} - M^{2})/M^{2}}.$$

Fedor Martynenko (Samara University) V. I. Korobov Hadronic light by light contribution to the fine and hy

Axial vector exchange. Vertical diagram

Contribution to the interaction operator in momentum representation takes the form:

$$\Delta V_{AV,vert}^{hfs} = -\frac{64}{9} \frac{\alpha^2 (Z\alpha)^2}{t^2 + M_A^2} \int \frac{d^4k}{\pi^2} \frac{A(t^2, k^2, k^2)(2k^2 + k_0^2)}{k^2(k^2 - 2m_1k_0)} \int \frac{d^4r}{\pi^2} \frac{A(t^2, r^2, r^2)(2r^2 + r_0^2)}{r^2(r^2 - 2m_2r_0)}$$

• For the purpose of further integration over loop momenta, we pass to the Euclidean space:

$$k^2 \to -k^2, \quad r^2 \to -r^2, \quad k_0^2 \to -k_0^2 = -k^2 \cos^2 \psi_1, \quad r_0^2 \to -r_0^2 = -r^2 \cos^2 \psi_2.$$

• Momentum integrals can be calculated analytically:

$$I_e = \int d^4k \frac{(2k^2 + k_0^2)}{k^2(k^2 - 2k_0m_1)} \frac{\Lambda^4}{(k^2 - \Lambda^2)^2} = -\frac{\pi^2\Lambda_A^2}{4(1 - a_e^2)^{5/2}} \left[3\sqrt{1 - a_e^2} - a_e^2(5 - 2a_e^2) \ln \frac{1 + \sqrt{1 - a_e^2}}{a_e} \right], \quad a_e = \frac{2m_1}{\Lambda}.$$

• After all transformation the contribution to the muonium hyperfine structure of 1S state:

$$\Delta E_{AV,vert}^{hfs}(1S) = -\frac{64\alpha^2 (Z\alpha)^5 \mu^3 A(0,0,0)^2}{9\pi M_A^2 \left(1 + \frac{2W}{M_A}\right)^2} I_e I_\mu.$$

Fedor Martynenko (Samara University) V. I. Korobov Hadronic light by light contribution to the fine and hy

7/14

Axial vector exchange. Horizontal diagrams

In the case of horizontal exchanges, sum of direct and crossed diagrams gives:

The contribution to the muonium hyperfine structure of 1S state takes the integral form:

$$\begin{split} \Delta E_{AV,hor}^{hfs}(1S) &= \frac{16\alpha^2 (Z\alpha)^5 \mu^3 \Lambda^2}{3\pi} \int_0^\infty dk_1 \int \frac{d\Omega_1}{\pi^2} \int_0^\infty dk_2 \int \frac{d\Omega_2}{\pi^2} \frac{A(M_A^2, k_1^2, k_2^2)}{(k_1^2 + a_e^2 \cos^2 \psi_1)} \times \\ & \frac{A(M_A^2, k_1^2, k_2^2)}{(k_2^2 + a_\mu^2 \cos^2 \psi_2)} \frac{N_{AV}^{hor}}{(k_1^2 + k_2^2 + 2k_1 k_2 \cos\Omega + \frac{M_A^2}{\Lambda^2})}, \end{split}$$

イロト イポト イヨト イヨト

For the numerical estimation all integrals are calculated numerically.

PS, S, T mesons. Horizontal diagrams

Vertical diagram in the case of scalar, pseudoscalar and tensor mesons in the leading order leads to contribution equal to zero. In the case of horizontal diagrams contributions can presented in integral form.

Scalar meson:

$$\Delta E_{5,hor}^{hfs} = \frac{16\alpha^2 (Z\alpha)^5 \mu^3}{3\pi} \int_0^\infty dk_1 \int \frac{d\Omega_1}{\pi^2} \int_0^\infty dk_2 \int \frac{d\Omega_2}{\pi^2} \frac{A(M_5^2, k_1^2, k_2^2)}{(k_1^2 + a_e^2 \cos^2 \psi_1)} \times \frac{A(M_5^2, k_1^2, k_2^2)}{(k_2^2 + a_\mu^2 \cos^2 \psi_2)} \frac{k_1^2 k_2^2 \cos \Omega (\cos \Omega \cos \psi_1 \cos \psi_2 - 1 - \cos^2 \psi_1 - \cos^2 \psi_2 - \cos^2 \Omega)}{(k_1^2 + k_2^2 + 2k_1 k_2 \cos \Omega + \frac{M_5^2}{\lambda^2})},$$

Pseudoscalar meson:

$$\begin{split} \Delta \mathcal{E}_{PS,hor}^{hfs} &= -\frac{\alpha^2 (Z\alpha)^5 \mu^3}{3\pi F_P^2} \int \frac{d^4 k_1}{k_1 \pi^4} \int \frac{d^4 k_2}{k_2 \pi^4} [\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(k_1^2, k_2^2)]^2 \times \\ \frac{(\cos \Omega + \cos^2 \Omega - \cos^3 \Omega + \cos \psi_1 \cos \psi_2 - \cos \Omega \cos^2 \psi_1 - \cos \Omega \cos^2 \psi_2)}{(k_1^2 + a_e^2 \cos \psi_1^2)(k_2^2 + a_\mu^2 \cos \psi_2^2)((k_1 + k_2)^2 + \frac{M_P^2}{\Lambda^2})}, \end{split}$$

Tensor meson.

$$\Delta E_{T,hor}^{hfs} = \frac{128\pi\alpha^2 (Z\alpha)^5 \mu^3}{3M_T^2} \int_0^\infty k_1^2 dk_1 \int_0^\pi \frac{\sin^2 \psi_1}{\pi^3} \int_0^\infty k_2^2 dk_2 \int_0^\pi \frac{\sin^2 \psi_2}{\pi^3} \int_0^\pi \sin\theta d\theta$$

$$\frac{A_{T\gamma^*\gamma^*}^2 (M_T^2, 0, 0) (k_1^0 k_2^0 - k_1 k_2 + \frac{1}{k_1^2 k_2^2 - (k_1 k_2)^2} [k_1^2 (k_2^0)^2 (k_1 k_2) + k_2^2 (k_1^0)^2 (k_1 k_2) - 2k_1^2 k_2^2 k_1^0 k_2^0])}{(k_1^2 + 1)^2 (k_2^2 + 1)^2 (k_1^2 + a_e^2 \cos^2 \psi_1) (k_2^2 + a_\mu^2 \cos^2 \psi_2) [(k_1 + k_2)^2 + \frac{M_T^2}{4N_T^2}]} = 2\sqrt{2}$$
enko (Samar University) V. I. Koroboy Hadronic light by light contribution to the fine and hy
$$\frac{24.30 \operatorname{august} 2023}{4M_T^2} = 2\sqrt{2}$$

Meson parameters

Main parameters of mesons, such masses and decay width $\Gamma_{M \to \gamma\gamma}$ are presented in summary table of Particle Data Group collaboration (*R.L. Workman et al.*(*Particle Data Group*), *Prog.Theor.Exp.Phys.2022*, 083C01 (2022)).

• $f_1(1^{++}): M = 1281.5 \ MeV, \Lambda = 1040 \ MeV, A(M^2, 0, 0) = 0.226 \ GeV^{-2}$ • $a_1(1^{++}): M = 1260 \ MeV, \Lambda = 1040 \ MeV, A(M^2, 0, 0) = 0.160 \ GeV^{-2}$ • $f_1(1^{++}): M = 1426.3 \ MeV, \Lambda = 926 \ MeV, A(M^2, 0, 0) = 0.193 \ GeV^{-2}$ • $\sigma(0^{++}): M = 550 \ MeV, \Lambda = 2000 \ MeV, A(M^2, 0, 0) = -0.596 \ GeV^{-2}$ • $f_0(0^{++}): M = 980 \ MeV, \Lambda = 2000 \ MeV, A(M^2, 0, 0) = -0.085 \ GeV^{-2}$ • $a_0(0^{++}): M = 980 \ MeV, \Lambda = 2000 \ MeV, A(M^2, 0, 0) = -0.086 \ GeV^{-2}$ • $f_0(0^{++}): M = 1370 \ MeV, \Lambda = 2000 \ MeV, A(M^2, 0, 0) = -0.036 \ GeV^{-2}$ • $f_0(0^{++}): M = 135.9768 \ MeV, \Lambda = 770 \ MeV, A(M^2, 0, 0) = 0.025 \ GeV^{-2}$ • $\eta(0^{-+}): M = 547.862 \ MeV, \Lambda = 774 \ MeV, A(M^2, 0, 0) = 0.031 \ GeV^{-2}$ • $f_2(2^{++}): M = 1275.4 \ MeV, \Lambda = 2000 \ MeV, A(M^2, 0, 0) = 0.498 \ GeV^{-2}$

Values of transition form factor $A_{AV\gamma\gamma}(M^2, 0, 0)$ can be fixed from experimental data of L3 collaboration (*A. E. Dorokhov, et al., Phys. Lett. B, 776, 105 (2018)*). In the case of other mesons it can be expressed in term of decay width $\Gamma_{M\to\gamma\gamma}$:

$$A_{PS\gamma\gamma} = \sqrt{\frac{64\pi^3\Gamma_{PS}\rightarrow\gamma\gamma}{\alpha^2 M_{PS}^3}}, \ A_{S\gamma\gamma} = \sqrt{\frac{4\Gamma_{S\rightarrow\gamma\gamma}}{\pi\alpha^2 M_S^3}}, \ A_{T\gamma\gamma} = \sqrt{\frac{20\Gamma_{T\rightarrow\gamma\gamma}}{\pi\alpha^2 M_T}}.$$

24-30 august 2023

10/14

Numerical results

Axial vector meson:

■ Scalar meson:

Pseudoscalar meson:

■ Tensor meson:

$$\begin{split} \Delta E_{f_1(1285)}^{hfs,\nu}(1S) &= -0.00028 \text{ Hz}, \quad \Delta E_{f_1(1285)}^{hfs,h}(1S) &= -0.00311 \text{ Hz}. \\ \Delta E_{a_1(1260)}^{hfs,\nu}(1S) &= -0.00011 \text{ Hz}, \quad \Delta E_{a_1(1260)}^{hfs,h}(1S) &= -0.00115 \text{ Hz}. \\ \Delta E_{f_1(1420)}^{hfs,\nu}(1S) &= -0.00007 \text{ Hz}, \quad \Delta E_{f_1(1420)}^{hfs,h}(1S) &= -0.00096 \text{ Hz}. \\ \Delta E_{\sigma(550)}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\sigma(550)}^{hfs,h}(1S) &= 0.02701 \text{ Hz}. \\ \Delta E_{f_0(980)}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\sigma(550)}^{hfs,h}(1S) &= 0.00023 \text{ Hz}. \\ \Delta E_{a_0(980)}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{a_0(980)}^{hfs,h}(1S) &= 0.00023 \text{ Hz}. \\ \Delta E_{a_0(980)}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{a_0(980)}^{hfs,h}(1S) &= 0.00002 \text{ Hz}. \\ \Delta E_{f_0(1370)}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\sigma(1350)}^{hfs,h}(1S) &= -0.00650 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00170 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00170 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00165 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00165 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00165 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00165 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00165 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= -0.00165 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= 0.00006 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= 0.00006 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= 0.00006 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= 0.00006 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= 0.00006 \text{ Hz}. \\ \Delta E_{\eta^{hfs,\nu}}^{hfs,\nu}(1S) &= 0 \text{ Hz}, \quad \Delta E_{\eta^{hfs,h}}^{hfs,h}(1S) &= 0.000006 \text{ Hz}. \\$$

Fedor Martynenko (Samara University) V. I. Korobov Hadronic light by light contribution to the fine and hy

Conclusion

In comparison with previous results

• R. N. Faustov, A. P. Martynenko, Phys. Lett. B 541, 135 (2002)

• S. G. Karshenboim, V. A. Shelyuto, A. I. Vainstein, Phys. Rev. D 78, 065036 (2008) we consider in our calculation

• interaction amplitudes of horizontal and vertical exchange,

• scalar, pseudoscalar, axial vector and tensor meson exchanges.

Total contribution:

 $\Delta E^{hfs}(1S) = 0.012 \text{ Hz}$

The uncertainty of our theoretical result remains large because of large experimental errors in determination of transition formfactors parameters. We estimate the uncertainty is 50% for scalar meson exchange.

Thank You!

< □ > < □ > < □ > < □ > < □ >

2

Transition form factor $\gamma^* + \gamma^* \rightarrow S$

Local quark model gives for $A(t^2, k_1^2, k_2^2)$:

$$A(t^2, k_1^2, k_2^2) = g_{S\gamma\gamma} \frac{N_c}{2\pi^2} \operatorname{Tr}[\tau_M Q Q] I_{S\gamma\gamma}.$$

< □ > < □ > < □ > < □ > < □ >

For kinematics: $t^2 = 0$, $k_1^2 = -k^2$, $k_2^2 = -k^2$

$$I_{S\gamma\gamma}(0,-k^2,-k^2) = \frac{m_q}{k^2} \left(-2 + \frac{4m_q^2 ln\left(\frac{k\sqrt{4m_q^2+k^2}+2m_q^2+k^2}{2m_q^2}\right)}{\sqrt{k^2(4m_q^2+k^2)}}\right)$$

Expression for the integral at small momenta k allows to estimate transition form factor at zero:

$$A_{S}^{\prime=0}=-rac{5}{18\pi^{2}f_{\pi}}, \quad A_{S}^{\prime=1}=-rac{1}{6\pi^{2}f_{\pi}}$$