

WENTY-FIRST LOMONOSOV CONFERENCE August, 24-30, 2023 ON ELEMENTARY PARTICLE PHYSICS IOSCOW STATE UNIVERSITY

Study of the e⁺e⁻ -> hadrons cross sections at the NNbar threshold with CMD-3 at VEPP2000

E. P. Solodov BudkerINP, Novosibirsk, Russia

CMD-3 Collaboration at VEPP2000 collider

24-30.08.2023

NNbar threshold scan - 2017 data

20+50 pb ⁻¹ ~2 pb⁻¹/point

Anti-protons close to the production threshold are seen as an annihilation star at the vacuum beam pipe (or in the DC inner wall)+ large energy deposition in the calorimeters.

Above 1900 we see collinear PPbar tracks in DC

Theory: A.I. Milstein, S.G. Salnikov, Nucl. Phys. A 977 (2018) 60.

Nucleons are formed from the quarks in e+e- -> NNbar and at the threshold are slow – final state strong interaction at small distances.

Geen points – BaBar data

Phys. Lett. B 723 (2013) 73 Phys. Lett. B 794 (2019) 64–68

24-30.08.2023

NNbar threshold in hadronic reactions

Openning NNbar real reaction reflects in XS drop in multihadron productions

Energy spread ~ 1 MeV Simultanious fit with PPbar by exponentialy rising (drop) functions gives:

σ^{thr} = 0.18±0.27 MeV

Consistent with zero within uncertainty in energy due to beam spread and radiative corrections.

No signal for the $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$ reaction

The idea, that signal in the hadronic cross section is propotional to the annihilation rate of NNbar to this final state does not work!?

Are there any indications for other hadronic cross sections?

24-30.08.2023

New scans

-	Scan 2019 – from 1.4 to 2.0 GeV c.m. 28 points with ~2 pb ⁻¹ /point	40.462 pb ⁻¹
-	Scan 2020 – from 1.870 to 1.935 GeV – 5 points with 10 pb ⁻¹ /point	46.870 pb ⁻¹
-	Scan 2021 – from 1.935 to 2007 GeV – 4 points with 10pb ⁻¹ /point (24 pb ⁻¹ at 2007)	48.400 pb ⁻¹
-	Scan 2021-2022 at NN threshold and below to 1.600 Gev:	282.844 pb ⁻¹
	18 point at the threshold with ~1 MeV step – 10 pb ⁻¹ /point (x5 to 2017 scan)	
	13 points below threshold with 10 MeV step – 5-10 pb ⁻¹ /point	
-	Scan 2023 – from 1.600 down to 1.400 GeV – with ~10pb ⁻¹ /point	176.860 pb ⁻¹

595.4 pb⁻¹

We plan to study the energy behavior of many hadronic reactions And in particular at the NNbar threshold

Energy measurement

24-30.08.2023

Starting from 2012, energy is monitored continuously using Compton backscattering

Energy control during data taking at each point

24-30.08.2023

New ppbar detailed threshold scan

Anti-protons close to the production threshold are seen as an annihilation star at the vacuum beam pipe (or in the DC inner wall)+ large energy deposition in the calorimeters.

We plot radius of the vertex with >2 tracks and energy deposition > 500 MeV

First peak – radius of the aluminum vacuum pipe R_{vp} = 1.7 cm, (0.5 mm) Second peak – inner wall of the DC carbon fiber R_{DC} = 2.1 cm (0.25mm)

Just a monitor – not a measurement yet

GE/GM measurement

ppbar events polar angle distribution for Ec.m. = 1980 MeV, and fit with sum of expected distributions with GE=0 and GM=0

nnbar production

Example of $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$ from CMD-3

August 26, 2023

solodov_6pi

First look to $e^+e^- \rightarrow 3(\pi^+\pi^-)$ reaction (new data)

30% drop with 1.91+-0.15 MeV shape at 1877.9+-0.13 MeV

24-30.08.2023

First look to visible (number of events/luminosity) cross sections (no corrections)

We confirm, that $e+e- > 4\pi 2\pi^0$ (is dominated by $e+e- > \omega 3\pi$) and $e+e- > K^+K^-\pi^+\pi^-$ reactions demonstrate structures at the NNbar threshold

Expect signal in other reactions?

THE ANTINUCLEON–NUCLEON INTERACTION

AT LOW ENERGY: ANNIHILATION DYNAMICS

Eberhard Klempt Helmholtz-Institut für Strahlen- und Kernphysik der Rheinische Friedrich-Wilhelms Universität Nußallee 14-16, D-53115 Bonn, Germany

> Chris Batty Rutherford Appleton Laboratory Chilton, Didcot Oxon, OX11 OQX, United Kingdom

Jean-Marc Richard Laboratoire de Physique Subatomique et Cosmologie Université Joseph Fourier-CNRS-IN2P3 53, avenue des Martyrs, F-38026 Grenoble Cedex, France

February 5, 2008

Abstract

The general properties of antiproton-proton annihilation at rest are presented, with special focus on the two-meson final states. The data exhibit remarkable dynamical selection rules: some allowed annihilation modes are suppressed by one order of magnitude with respect to modes of comparable phase-space. Various phenomenological analyses are reviewed, based on microscopic quark dynamics or symmetry considerations. The role of initial- and final-state interaction is also examined

PbarP annyhilation rates

Table 8: Pionic multiplicity distribution.

_	From Table 7	From [262]
2 pions	$0.38\pm0.03\%$	$0.38\pm0.03\%$
3 pions	$7.4\pm0.3\%$	$7.8\pm0.4\%$
4 pions	$18.1\pm1.8\%$	$17.5\pm3.0\%$
5 pions	$35.2\pm3.7\%$	$45.8\pm3.0\%$
6 pions	$23.3\pm2.8\%$	$22.1 \pm 1.5\%$
7 pions	$3.3\pm0.3\%$	$6.1\pm1.0\%$
8 pions		$0.3\pm0.1\%$

 $BR(\bar{p}p \rightarrow kaons + anything) = (5.4 \pm 1.7)\%$.

(5.11)

In short, one event out of 20 contains strange particles in the final state.

It is natural to expect signal in other hadronic reactions to be proportional to the PbarP annyhilation rate to this final state

BUT

First look to visible (number of events/luminosity) cross sections (no corrections)

Nothing is seen for the e+e- -> $\pi^+\pi^-\pi^+\pi^-$ and e+e- -> $\pi^+\pi^-\pi^0\pi^0$ reactions !!

24-30.08.2023

First look to visible (number of events/luminosity) cross sections (no corrections)

Nothing is seen for the e+e- -> $\pi^+\pi^-\pi^+\pi^-\pi^0$ and e+e- -> $\pi^+\pi^-\pi^+\pi^-\eta$ reactions !!

24-30.08.2023

First look to visible (number of events/luminosity) cross sections (no corrections)

Nothing is seen for the e+e- -> $\pi^+\pi^-\pi^0$, e+e- -> $\pi^+\pi^-\eta$, and e+e- -> $\pi^+\pi^-\pi^0\eta$ reactions !!

CONCLUSION

- New small-step energy scans have been performed at the VEPP2000 e⁺e⁻ collider with the significantly increased (x5) integrated luminosity.
- First preliminary results from CMD-3 confirms a fast cross section changing in the e⁺e⁻ ->ppbar, e⁺e⁻ -> $3(\pi^{+}\pi^{-})$, $2(\pi^{+}\pi^{-})2\pi^{0}$ and $K^{+}K^{-}\pi^{+}\pi^{-}$ reactions at the NNbar threshold.
- NO other hadronic reactions exhibit structure at the NNbar threshold in the e⁺e⁻ collisions. Why? Ideas are needed.
- We plan to investigate this effect, study the cross section and production dynamic for the hadronic reactions.

THANK YOU

24-30.08.2023