Measurement of muon g-2 at Fermilab

Ivan Logashenko (BINP)

On behalf of Muon G-2 Collaboration

XXI Lomonosov Conference on Particle Physics

August 24-30, 2023 Moscow

Muon G-2 collaboration

USA

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

181 collaborators33 Institutions7 countries

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine
- 🚷 Korea

 CAPP/IBS

– KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

Muon g-2 Collaboration 7 countries, 35 institutions, 190 collaborators

Muon g-2 Collaboration Meeting @ Elba, May 2019

Muon G-2 Ring @FNAL

The basics

Gyromagnetic ratio g connects magnetic moment μ and spin s

For point-like particle $oldsymbol{g}=2$

Anomalous magnetic moment *a* arises in higher-orders

 $a_e \approx a_\mu \approx \frac{\alpha}{2\pi} \approx 10^{-3}$ (QED dominated)

a = (g - 2)/2

 $\vec{\mu}_S = g \frac{e}{2m} \vec{S}$

Idea of experiment: by comparing measured value of a with the theory prediction we probe extra contributions to a beyond theory expectations $a_{\mu}(strong)/a_{\mu}(QED) \approx 6 \times 10^{-5}$ $a_{\mu}(weak)/a_{\mu}(QED) \approx 10^{-6}$

Why muon? For massive fields there is natural scaling, which enhances contribution to a_{μ} by $(m_{\mu}/m_e)^2 \sim 43000$ compared to a_e

Principles of CERN-III type measurement **1**. Spin precesses relative to momentum with frequency ω_a proportional directly to a_{μ}

$$\omega_a = \omega_s - \omega_c = \frac{a_{\mu}eB}{mc}$$

 $a_{\mu} = \frac{mc}{e} \frac{\omega_a}{B}$

Need focusing!

2. Effect of electric field is cancels out for muons of "magic" momentum

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

zero for $\gamma_{\mu} = 29.3$

Storage Ring momentum

Muons with p = 3.09 GeV/c are used

Focusing with electrostatic quadrupoles

The ring magnet

The storage ring is a 14 m diameter, 1.45 T C-shaped magnet

In-vacuum NMR trolley maps field every ~3 days

• 378 fixed probes monitor field during muon storage at 72 locations

Field map is convoluted with muon spatial distribution to get an average field

Monitoring B field

 Cross-calibrate using a cylindrical plunging H₂O probe which repeatedly changes places with trolley (petroleum jelly probes)

- This probe is checked against a spherical probe using an MRI magnet at ANL
- Both also cross-checked against a ³He probe (different systematics)

 $\Delta B/B \approx 5 \cdot 10^{-8}$

H₂O Probe

³He Probe

Absolute calibration

Generation of muons

4 Booster batchs → 16 muon fills
1.4 sec repetition rate

$$v_{\mu} \rightleftharpoons \mu^{+} \longrightarrow \mu^{+} \longleftarrow$$

Select ~3.1 GeV π⁺ (magic p)
Parity violation → 95% polarized muons

Injection ofmuons

Muons are injected into the storage ring with uniform field. After one turn they hit the wall,

Fast kicker magnet briefly reduces field at 90° and puts beam to standard orbit

Kicker

• Electrostatic quadrupoles vertically contain the beam

Quads

Calorimeters

• Time & energy of decay e⁺ are measured by **24 calorimeters**

Each calorimeter: array of $9x6 \text{ PbF}_2$ crystals (2.5 x 2.5 cm² x 14 cm, 15X₀), readout by SiPMs

Measurement of muon g-2 at Fermilab

Measuring ω_a

The energy distribution of positrons depends on spin direction, thus number of high energy positrons is modulated by precession frequency

Time after injection modulo 102.5 μs [μs]

5-par fit

Simple model: exponential decay and precession

$$N(t) = N_0 e^{(-t/\tau)} [1 + A\cos(\omega_a t - \phi)]$$

Realistic model must account for **detector effects**, **beam oscillations** that couple to acceptance, and **lost muons** that disrupt pure exponential

Full fit function

Fit function is extended to cover all extra effects

$$N_0 e^{-t/\tau} (1 + A\cos(\omega_a t + \phi))$$

$$f(t) = N_0 e^{-t/\tau} \Lambda(t) N_{cbo}(t) N_{2cbo}(t) (1 + A_{cbo}(t)\cos(\omega_a t + \phi_{cbo}(t)))$$

• Muons that are lost from storage ring before they decay:

$$\Lambda(t) = 1 - \kappa_{loss} \int_{t_0}^t L(t') e^{(t'/\tau)} dt'$$

• Beam oscillations that modulate decay rate:

e.g.
$$N_{cbo}(t) = (1 + A_{cbo-N} \cdot e^{-t/\tau_{cbo}} \cdot \cos(\omega_{cbo}(t) \cdot t + \phi_{cbo-N}))$$

Full fit

Realistic model allows to reach good fit quality. These effect are important! ω_a shifts by 1-2 ppm.

Must check for potential early-to-late effects

Obtaining a_{μ}

$$\begin{split} & \frac{\omega_a}{\omega_p} = \frac{\omega_a^m}{\omega_p^m} \frac{1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}}{1 + B_k + B_q} \\ & \text{Measured Values} \\ & a_\mu = \underbrace{\frac{\omega_a}{\omega_p}}_{k} \times \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_\mu}{m_e} \frac{g_e}{2} \\ & \text{Metrological constants known to ~25 ppb} \end{split}$$

Total correction is about 622 ppb

Measurement of muon g-2 at Fermilab

Run-1 vs Run-2/3

Statistics

• Factor 4.7 more data in Run-2/3 than Run-1

Dataset	Statistical Error [ppb]	
Run-1	434	
Run-2/3	201	
Run-1 + Run-2/3	185	

Improvement by factor 2.2

Run-1 vs Run-2/3

Systematics

- Pulsing quads vibrate ⇒ oscillating magnetic fields
- Measured with a new NMR probe housed in insulator

- For Run-1 analysis, we had **limited measurement positions**
- Largest Run-1 systematic: 92 ppb
- For Run-2/3 the field was fully mapped and uncertainty is reduced to **20 ppb**

Ivan Logashenko (BINP)

Improvements

 B_q

Measurement of muon g-2 at Fermilab

Other Improvements

• Running conditions:

- Improved cooling of the hall and added insulation of the magnet which made the magnetic field more stable
- Improved kicker strength which made the orbit more centered and reduced the E-field correction

Improved measurements:

 Reduced vibration noise for kicker transient field measurement

Analysis improvements:

- Improved treatment of the pileup for $\omega_{\rm a}$ analysis
- Improved analysis of E-field correction including correlations between momentum & time of injection.

Final error table

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_{c}^{m} (statistical)		201
ω_a^m (systematic)	_	25
C_e	451	32
C_p	170	10
$\hat{C_{pa}}$	-27	13
$\hat{C_{dd}}$	-15	17
C_{ml}	0	3
$f_{\text{calib}}\langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu'_{p}(34.7^{\circ})/\mu_{e}$	_	11
m_{μ}/m_e	—	22
$g_e/2$	_	0
Total systematic	_	70
Total external parameters	_	25
Totals	622	215

The Run-2/3 result is statistically dominated 70 ppb systematic uncertainty surpasses the proposal goal of 100 ppb!

Total collected statistics

21.9 BNL datasets have been collected in FNAL (proposal – 21 BNL)

Run 4/5/6 statistics is x3 Run-1/2/3

Strong interactions Weak interactions Electromagnetic interactions SM prediction for 0.000 000 069 37 (43) 0.000 000 001 54 (1) 0.001 165 847 19 (0.1) $a_{\mu} = 0.001 \ 165 \ 918 \ 10 \ (43)$ The uncertainty is dominated by contribution of strong interactions

Dispersive approach: $a_{\mu}(Had; LO) = \int \sigma_{e^+e^- \rightarrow hadrons}(s) K(s) ds$

Ivan Logashenko (BINP)

 a_{μ}

Experiment vs SM prediction

At the moment, the SM prediction for a_{μ} is unclear (due to hadronic contribution) CMD-3 measurement will be discussed in the next talk by G.Fedotovich

Experiment vs SM prediction

At the moment, the SM prediction for a_{μ} is unclear (due to hadronic contribution) CMD-3 measurement will be discussed in the next talk by G.Fedotovich

Prospects for SM prediction

- There are a lot of efforts to understand discrepancies in existing data
- 2. There will be additional highstatistics results on hadron cross sections from VEPP-2000 experiments (CMD-3, SND)
- There will be new results from Bfactories on hadron cross section (BaBar, Belle-II)
- 4. There is dedicated experiment, Muone, being prepared at CERN to measure hadronic contribution via *e*μ scattering
- 5. There is fast progress in lattice calculations

Hadronic contribution from 2π based on data from various experiments

There are discrepancies between hadron data from various experiments well beyond estimated systematic errors

There are good chances to improve precision of SM prediction in coming years

Conclusion

- We've determined a_{μ} to an unprecedented **203 ppb** precision
- New result is in excellent agreement with Run-1
 & BNL
- Systematic uncertainty of 70 ppb surpassed the design goal
- The data taking is finished; about 3 times more data are to be analyzed
- The status of SM prediction is unclear; with amount of world-wide dedicated efforts, expect improvement in theory in coming years