

TWENTY-FIRST LOMONOSOV CONFERENCE August, 24-30, 2023 ON ELEMENTARY PARTICLE PHYSICS MOSCOW STATE UNIVERSITY

Real and virtual direct photon measurements with ALICE

D.Peresunko NRC "Kurchatov institute"

for the ALICE collaboration

Photon classification

- Decay photons: photons from decays of final hadrons
- Direct photons photons not originating from hadron decays but produced in electromagnetic interactions in course of collision
 - Prompt direct photons: ones from interaction of partons of incoming nucleons
 - Thermal direct photons: thermal radiation of hot matter
 - Direct photons measured as a difference $N_v^{dir} = N_v^{incl} N_v^{dec}$
 - Can not be identified event-by-event

- **Isolated photons**: photons without hadronic activity in some cone (*R*~0.4) around the photon
- Difference between direct and isolated photons diminish at high $p_{\rm T}$
 - Can be measured in event-by-event basis
 - Purity rapidly decreases with decrease of p_{τ} , can not be measured at low p_{τ} <10-20 GeV/c

Direct photon collective flow

$$\frac{dN}{d\phi} = 1 + 2v_1 \cos\left(\phi - \Psi_{RP}\right) + 2v_2 \cos\left[2\left(\phi - \Psi_{RP}\right)\right] + 2v_3 \cos\left[3\left(\phi - \Psi_{RP}\right)\right] + \dots$$

- Direct photon flow similar to flow of decay photons and stronger than predictions of hydrodynamic models (direct photon flow puzzle)
- However, uncertainties too large to make final conclusion

Phys.Lett.B 789 (2019) 308-322

$$v_n^{dir} = v_n^{decay} + \frac{R}{R-1} (v_n^{incl} - v_n^{decay})$$

D.Peresunko, Direct photons in ALICE

ALICE

ALI-PUB-158404

 $p_{_{\rm T}}$ (GeV/c) 6

ALICE

Photon puzzle at LHC

- New ALICE 5.02 TeV data consistent with theory predictions
- Conversion method now uses self-normalized material budget estimate what considerably decreased uncertainties, see arXiv:2303.15317

Scaling of the direct photon slope and yield with $dN_{ch}/d\eta$

• Effective slope of direct photon spectrum at $1.1 < p_T < 2.1$ GeV/*c* is higher, but consistent within uncertainties to slope at RHIC energy

 Integrated direct photon yield is consistent with extrapolation of PHENIX results and of STAR results at RHIC

Direct photons in pp collisions

- New high-precision data produced with internal conversion method show direct photon yield down to $p_T = 1 \text{ GeV/}c$
- Direct photon spectrum agrees with pQCD predictions and with predictions including thermal emission
- In high-multiplicity pp collisions direct photon yield increases proportional to multiplicity

Real and virtual photons

Real photons:

- Thermal contribution significant at p_T<3-5 GeV/c
- Slope strongly affected by collective flow
- Integrate contributions from preequilibrium phase till hadronic gas freezeout

Virtual photons:

- Intermediate mass region provides true temperature
- May contain pre-equibrium contribution
- Excess in low-mass region can be related to real photon yield via Kroll-Wada formula

N.M.Kroll and W.Wada, Phys. Rev. 98 (1955) 1355

 $\frac{1}{N_{\gamma}}\frac{dN}{dM_{ee}} = \frac{2\alpha}{3\pi}\sqrt{1 - \frac{4m_e^2}{M_{ee}^2}} \left(1 + \frac{2m_e^2}{M_{ee}^2}\right)\frac{1}{M_{ee}} \left(1 - \frac{M_{ee}^2}{M^2}\right)^3 |F(M_{ee}^2)|^2$

Dileptons at LHC

- Hint for an excess at low m_{ee}
 - Consistent with additional thermal radiation from the medium
- Need to control heavy-flavour background
 DCA_{ee} studies in Pb-Pb
- Extract fraction of direct photons by fitting the m_{ee} spectra ($m_{ee} < 0.4 \text{ GeV/}c^2$)
- No significant excess at medium mass region 1.1<m_{ee}<2.5 GeV/c²

Direct photon Bose-Einstein correlations

- Space-time dimensions of hot matter
- Correlation strength λ reflects proportion of direct photons

$$\lambda = \frac{1}{2} \frac{N^{Direct pairs}}{N^{All pairs}} = \frac{1}{2} \left(\frac{N_{\gamma}^{dir}}{N_{\gamma}^{all}} \right)^2 \sim 10^{-3}$$

[□] Some hint of correlation is observed

D.Peresunko, Direct photons in ALICE

-0.005

ALI-PREL-504794

0.35 0.4

 $k_{\rm T}$ (GeV/c)

13

Conclusions

- Direct photons measured in pp, pA and AA collisions
- Fix initial stage of collision with prompt direct photons
- Clearly see thermal direct photons in central AA collisions and possible hint in pp collisions
- Hydrodynamic calculations reproduce ALICE results on spectra and collective flow of thermal direct photons

This work was supported by the Russian Science Foundation grant RSF 22-42-04405

Backup slides

ALICE performance in Run3

D.Peresunko, Direct photons in ALICE