Overview of the JUNO Experiment

Wei Wang, Sun Yat-sen University Lomonosov Conference, Aug 25, 2023

- Neutrino Oscillation: A Brief Review
- Neutrino Mass Ordering Resolution
- JUNO Design and Latest Status
- Summary and Conclusion

Reines&Cowan Detected Neutrinos in 1956

Neutrino Mixing & Oscillation Proposed

Бруно Понтекоры

 Extended to 3 flavor mixing by Maki,
Nakagawa and Sakata,
after muon neutrino was
discovered at BNL in 1962

• Bruno Pontecorvo in 1957:

Interaction Eigenstates \neq Mass Eigenstates \rightarrow Neutrino Mixing and Oscillation

S. Sakata

Z. Maki 1929-2005 M. Nakagawa

Neutrino Mixing & Oscillation

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix,

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 \Rightarrow Oscillation Probability:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = 1 - 4 \sum_{i < j} |V_{\alpha j}|^2 |V_{\beta i}|^2 \sin^2 \frac{\Delta m_{ji}^2 L}{4E}$$

Amplitude $\propto \sin^2 2\theta$

Frequency $\propto \Delta m^2 L/E$

Neutrino Mass Ordering Still Unknown

Known θ13 Enables Neutrino Mass Hierarchy at Reactors

Various Methods Resolving v Mass Ordering

Source / Principle	Matter Effect	Interference of Solar&Atm Osc. Terms	Collective Oscillation	Constraining Total Mass or Effective Mass
Atmospheric ν	Super-K, Hyper-K, IceCube PINGU, ICAL/INO, ORCA, DUNE	Atm 🗤 + JUNO		
Beam 🗤	T2K, NOvA, T2HKK, DUNE	Beam <i>ν</i> μ + JUNO		
Reactor <i>v</i> e		JUNO, JUNO+Beam <i>ν</i> μ		
Supernova Burst v			Super-K, Hyper-K, IceCube PINGU, ORCA, DUNE, JUNO	
Interplay of Measurements				Cosmo. Data, KATRIN, Proj-8, 0vββ

Wei Wang/王為 of SYSU

JUNO for Neutrino Mass Ordering

Wei Wang/王為 of SYSU

The JUNO Experimental Site

17 countries, 74 institutions, ~670 members

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China 🍠	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China 🔍	UCAS	Italy	INFN Catania
Brazil	UEL C C	China	USTC	Italy	INFN di Frascati
Chile 👣	PCUC	China	U. of South China	Italy	INFN-Ferrara
Chile	SAPHIR SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China 🧏	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China :	Xiamen University	Italy	INFN-Perugia
China	CAGS	China	Zhengzhou U.	Haly	INFN-Roma 3
China	ChongQing University	China 🧠 👌	NUDT	Pakistan	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia /	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U*	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU 2
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U. 🐐 🖇	Germany	RWTH Aachen U.	U.K.	U. Warwick
China	Shandong U.	Germany	TUM	USA	UMD-G
China	Shanghai JT U.	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Beijing	Germany	FZJ-IKP		

Last collaboration meeting, Jiangmen, China, July 2023

Challenges in Resolving MH using Reactors

Challenges in Resolving MH using Reactors

- Energy resolution: ~3%/sqrt(E)
- Energy scale uncertainty: <1%
- Statistics (the more the better)
- Reactor distribution: <~0.5km

25

20

15

10

5

0

-5

 $\Delta \chi^2$ (MH)

Y.F. Li et al

PRD88(2013)013008

-3

-2

-1

0

 $\Delta L (km)$

The Central Detector of JUNO

■ A 20kt liquid scintillator detector → the biggest LS detector ever!

Progresses&Status of the Central Detector

Polishing

The JUNO PMT System

Wei Wang/王為 of SYSU

Lumonosov Conference 2023

Progresses&Status of the PMT System

4600 20" PMTs and 3600 3" PMTs are installed (June, 2023)

Calibration System based on the Daya Bay experiences

Automatic Calibration Unit (ACU)

Cable Loop System (CLS)

entire energy range of reactor neutrinos and full-volume position coverage inside JUNO central detector

Wei Wang/王為 of SYSU

Design and Status of the LS System

- Using a recipe optimized from Daya Bay's experience, tested and changed to be more suitable for JUNO
- Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm.

Signal and backgrounds

Major IBD event cuts:

- Energy threshold: $E_{vis} > 0.7 MeV$
- Fiducial volume cut: R_{LS} < 17.2 m
- Timing cut: $\Delta T_{p-d} < 1 ms$
- Spatial cut: $R_{p-d} < 1.5 m$
- Cosmic muon veto cuts

- Visible energy spectrum of the survival reactor ve's
- Background contribution from 7 types of sources
- Accidentals are mainly coming from radiogenic elements such as ²³⁸U/²³²Th/⁴⁰K → material screening strategy achieved

for details, see JHEP 11 (2021) 102

Background	Rate (day^{-1})
Geoneutrinos	1.2
World reactors	1.0
Accidentals	0.8
⁹ Li/ ⁸ He	0.8
Atmospheric neutrinos	0.16
Fast neutrons	0.1
${}^{13}C(\alpha,n){}^{16}O$	0.05

• ~47 $\overline{v_e}$ evt/day (assuming ~82% efficiency) and ~4.1 bckg evt/day

Neutrino oscillation studies using reactor $\overline{v_e}$

JUNO measures $\Delta m^2_{21} \& \Delta m^2_{32}$ oscillations on the same spectrum

• JUNO can determine the Mass Ordering at 3σ level (6 years)

Subpercent precisions for 3 oscillation parameters (JUNO only)

Reactor Neutrinos NOT Perfect: RAA and a "Bump"

JUNO-TAO: A Satellite E

- Taishan Antineutrino Observator at ~40m from a 4.6 GW_{th} core
- ◆ Full coverage of SiPM with PDE dark noise): 4500 p.e./MeV → 1.

For details, see CDR arXiv:2005.0874

1:1 Prototype is being built at IHEP

An Exciting Phase for JUNO

Summary and Conclusion

- Reactor neutrino has played irreplaceable roles in neutrino studies and Daya Bay has made the most precise measurement of sin²2θ₁₃, which makes mass ordering resolution possible using reactor antineutrinos → JUNO has been a continuous effort based on the Daya Bay success
- JUNO is the only reactor experiment for neutrino mass ordering: observing the two oscillations on the same spectrum for the first time
- JUNO will also make subpercentage measurements of multiple oscillation parameters
- JUNO construction has entered its final stage. Data taking is expected in 2024!

Thanks for your Attention!

Combining JUNO and PINGU (courtesy of M. Wurm)

- Nominal configuration, i.e. PINGU (26 strings) + JUNO (10 cores)
- Reduced configurations, i.e. IC Upgrade (7 str) + JUNO (8 cores)
- > In any case, a 5σ discovery after 5 years!

JUNO's Multi-Physics Potential

Updated Performance of JUNO

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	4 Hz (33%)
Muon veto efficiency	83%	93% (12%)
Signal rate	60 /day	47.1 /day (22%)
Backgrounds	3.75 /day	4.11 /day (10%)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%)
Shape uncertainty	1%	JUNO+TAO
3σ NMO sensitivity exposure	< 6 yrs 35.8 GW _{th}	