August 25 2023, Lomonosov-2023

A. Konovalov (LPI RAS, MEPhI)

Status of COHERENT and new physics opportunities at SNS

Collaboration

~85 people, 21 institutions from 4 countries

Looking for new physics using coherent elastic v–nucleus scattering (CEvNS)

...but not only!

SNS facility at ORNL

Bunches of ~1 GeV protons on the Hg target with 60 Hz frequency Proton bunch time profile with FWHM of ~350 ns

Total neutrino flux of 4.3·10⁷ cm⁻²*s⁻¹ at 20m

2015-2017:

Science vol. 357 iss. 6456 (2017) 6.7σ first observation

2015-2019:

PRL vol. 129 081801 (2022)

11.6σ at full statistics

LAr, 24 kg (CENNS-10)

The full data (2017-2021) analysis is ongoing

CEvNS detectors: Ge-Mini

HPGe PPC

6 detectors deployed, ~13 kg active mass, 100-150 eV FWHM pulser resolution, expected threshold of 2.5 keV_{nr} \approx 0.4 keV_{ee}

About a month of BEAM ON data acquired -> Initial results this fall

CEvNS detectors: NalvETe

NaI[TI]: $2.4T \rightarrow 3.4T$

1 crystal = 7.7 kg, 1 module = 63 crystals, 5->7 modules planned [3 deployed ATM]

Sensitivity: 3σ per year (3.4 T), E_{thr} =13 keV_{nr}

CEvNS detectors: future – CENNS-750 (LAr)

750 kg total (610 kg fid.), 3000 CEvNS/year 128 PMTs, TPB for wavelength shifting

2500

15

energy [keVee]

Planned to be deployed and running by 2025

CEvNS detectors: future – cryogenic undoped CsI

Like CsI[Na], but better:

- Higher light yield at or below 77 K
 SiPMs:
 - high QE
 - no Cherenkov radiation
 - low dark count rate (low T)

- *R&D: detector shape and size: ~10 kg, 6"x 6" cylinder*
 - cooling: LN or cryocooler
 - QF measurements at TUNL
 - about 1.4 keV_{nr} threshold planned

Complementarity for NSI

Vector-like v-q NSI, $Q_{\alpha}^{2} = \left[Z\left(g_{p}^{V} + 2\varepsilon_{\alpha\alpha}^{u} + \varepsilon_{\alpha\alpha}^{d}\right) + N\left(g_{n}^{V} + \varepsilon_{\alpha\alpha}^{u} + 2\varepsilon_{\alpha\alpha}^{d}\right)\right]^{2}$, see JHEP 12 (2005) 021

Testing multiple techniques to identify optimal: sensitivity/scalability/price

Physics reach: $sin^2 \theta_w$

10

An interesting alternative way of v detection:

- larger cross sections (vs. IBD & v-e)_
- denser targets
- different detector technologies

List of <300 MeV neutrino-nucleus measurements with terrestrial sources

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)				
² H	$^{2}\mathrm{H}(u_{e},e^{-})\mathrm{pp}$	Stopped π/μ	LAMPF	$52 \pm 18(tot)$	54 (IA) (Tatara et al., 1990)				
¹² C	$^{12}C(\nu_e, e^-)^{12}N_{g.s.}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5(\text{stat}) \pm 0.8(\text{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)				
		Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita et al., 1988).				
		Stopped π/μ	LSND	$8.9 \pm 0.3 ({\rm stat}) \pm 0.9 ({\rm sys})$	8.9 [CRPA] (Kolbe et al., 1999b)				
	$^{12}{ m C}(u_e,e^-)^{12}{ m N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6(\text{stat}) \pm 0.5(\text{sys})$	5.4-5.6 [CRPA] (Kolbe et al., 1999b)				
		Stopped π/μ	E225	$3.6 \pm 2.0(tot)$	4.1 [Shell] (Hayes and S, 2000)				
		Stopped π/μ	LSND	$4.3\pm0.4(\mathrm{stat})\pm0.6(\mathrm{sys})$					
	${}^{12}C(\nu_{\mu},\nu_{\mu}){}^{12}C^*$	Stopped π/μ KARMEN		$3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys})$	2.8 [CRPA] (Kolbe et al., 1999b)				
	${}^{12}C(\nu,\nu){}^{12}C^*$	Stopped π/μ	KARMEN	$10.5 \pm 1.0 ({\rm stat}) \pm 0.9 ({\rm sys})$	10.5 [CRPA] (Kolbe et al., 1999b)				
	$^{12}\mathrm{C}(\nu_{\mu},\mu^{-})\mathrm{X}$	Decay in Flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750-1780 [CRPA] (Kolbe <i>et al.</i> , 1999b) 1380 [Shell] (Hayes and S, 2000) 1115 [Green's Function] (Meucci <i>et al.</i> , 2004)				
	$^{12}\mathrm{C}(u_{\mu},\mu^{-})^{12}\mathrm{N}_{\mathrm{g.s.}}$	Decay in Flight	LSND	$56\pm8({\rm stat})\pm10({\rm sys})$	68-73 [CRPA] (Kolbe et al., 1999b)56 [Shell] (Hayes and S, 2000)				
⁵⁶ Fe	${}^{56}{ m Fe}(u_e,e^-){}^{56}{ m Co}$	Stopped π/μ	KARMEN	$256 \pm 108(\text{stat}) \pm 43(\text{sys})$	264 [Shell] (Kolbe et al., 1999a)				
⁷¹ Ga	$^{71}{ m Ga}(u_e,e^-)^{71}{ m Ge}$	⁵¹ Cr source ⁵¹ Cr	GALLEX, ave. SAGE	$\begin{array}{l} 0.0054 \pm 0.0009 (tot) \\ 0.0055 \pm 0.0007 (tot) \end{array}$	0.0058 [Shell] (Haxton, 1998)				
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)				
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LAMPF	$284 \pm 91(\text{stat}) \pm 25(\text{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)				

[J. A. Formaggio & G. P. Zeller, Rev. Mod. Phys 84 (2012)]

SNS gives an opportunity to test this alternative channel!

Inelastic neutrino interactions: inclusive v_e CC on ¹²⁷I

Motivation:

1. Initial: $v_e + {}^{127}I \rightarrow e^- + {}^{127}Xe^*$ for solar ${}^{7}Be v_e$

2. Cross section depends on g_A (at ~10s MeV Q)

Detector: 24×7.7 kg Nal[Tl] crystalsExposure: ~5 yearsSignal: 10-55 MeV electrons in the delayed neutrino window

5.8σ CC signal (541 events), but 41% lower than MARLEY prediction If deconvolved to ON and $\geq 1N$ by energy deposition, data suggests lack of events with neutron emission

arXiv: 2305.19594

900 kg lead

NuThor and plans for LAr

Looking for neutrino-induced thorium fission – predicted in 1971, but not observed yet

52 kg metal Thorium deployed, looking for high neutron multiplicity events

Th-232 Metal	
Lead	
Gd-Water	
NaI[T1]	
Bor. Poly.	

LAr TPC: 250 kg LAr to for DUNE-like CC detection

Leading syst. right now: ±10% on the neutrino flux Idea: measure flux with $\nu_e + d \rightarrow p + p + e$

Bonus: charge current (CC) on oxygen for supernova v in Super/Hyper-Kamiokande

PRD 106, 032003 (2022)

	FY23														
	Oct	t-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Au	g-23	Sep-23	
SNS	FY22C SNS			T31 - PPU Test Target 2 (MTX-029) 1992 hours - ramp up to 1.55 MW @ 1.05 GeV			FY23A				(PPU 2MW Target) 1288 hours - ramp to 1.6/1.7 MW @ 1.05 GeV			FY24A	
HFIR	499	EOC 49	9 500		EOC 500					501	EOC 501	502	EOC 502	503	

	FY24													
	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jun-24	Jul-24	Aug	g-24	Sep-24	4
SNS		FY24A							PPU 2MW Target Ramp to 1.7 MW @ 1.3 GeV for 1250 hr KPP					
HFIR	EOC 503		504	EOC 504	505 EOC 505	506	EOC 506		507 EOC 507	508	EOC 508	509		

Upgrades

The Second Target Station (STS) provides more dedicated neutrino physics space COHERENT is in contact with ORNL on this matter (space/background level optimization)

Physics reach: the dark matter of Oak Ridge

Consider disappearance:

$$1 - P(\nu_e \to \nu_s) = 1 - \sin^2 2\theta_{14} \cos^2 \theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$
$$1 - P(\nu_\mu \to \nu_s) = 1 - \cos^4 \theta_{14} \sin^2 2\theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

We need a prior constraint on $\theta^{}_{_{34}}$, take from 3-flavor oscillations

Neutrino energy from 10 to 53 MeV, distances from 19 to 28 m $\implies \Delta m_{41}^2$ between 0.4 and 3.4 eV²

Collaboration operates multiple detectors in the «Neutrino Alley» at SNS

Wide physics reach

CEvNS
$$sin^2\theta_W$$
 Nuclear FF

Inelastic v interactions (CC, NC)

Thank you for your attention!

