

Recent results from the Baikal-GVD neutrino telescope

Grigory Safronov (INR RAS) for the Baikal-GVD collaboration

21st Lomonosov Conference on Elementary Particle Physics, Aug. 24 - 29 2023, Moscow, Russia

Baikal-GVD neutrino telescope

The Baikal-GVD (Gigaton Volume Detector) is a cubic-kilometer scale underwater neutrino detector being constructed in Lake Baikal

11 organisations from 4 countries, ~60 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- LATENA (St. Petersburg)
- INFRAD (Dubna)
- Comenius University (Bratislava, Slovakia)
- Institute of Nuclear Physics ME RK (Almaty, Kazakhstan)

Physics motivation I

Diffuse cosmic ray flux

The range of measured charged cosmic ray (CR) particle energies extends up to 10¹¹ GeV [10²⁰ eV]

That's an evidence for the existence of cosmic systems accelerating particles far beyond the LHC energy

Physics motivation II

Probing high-energy (HE) processes in remote systems directly is complicated

Multi-messenger observations:

- Charged CR particles are deflected by galactic magnetic fields
- VHE photons are absorbed in interactions with cosmic microwave background (CMB) and extragalactic background light (EBL)
- Neutrino can provide a direct probe of energy and source location

Physics motivation III

Some of CR acceleration site candidate types

active galactic nuclei

supernovae remnants

events (TDE)

starburst galaxies

Physics motivation IV

HE neutrinos are produced in CR pp or $p\gamma$ interactions

- In the vicinity of the remote acceleration sites
- With CMB along CR path (GZK effect)
- In Earth atmosphere

HE neutrino flux study is the primary goal of largevolume neutrino telescopes like **Baikal-GVD**

Neutrino telescope network

P-ONE, >1 km³ prototyping stage

NTARES, 0.01 km³ Stopped on 16.02.2022

KM3NET, 1 km³ deployment Baikal-GVD, 1 km³ 0.5 km³ deployed

Present generation of neutrino telescopes: ~1km³

IceCube 1 km³ Data taking since 2011 IceCube-Gen2 10 km³ prototyping stage

Neutrino detection principle

Sparse array of photodetectors in natural water(ice) reservoir

Cerenkov light from charged particle produced in neutrino interaction is detected

Neutrino event types:

Tracks (CC, $v_{\mu} v_{\tau}$):

- Good angular resolution: ~0.3° 0.5°
- Poor energy resolution: 200-300%
- Increased sensitive volume due to muon propagation range

Cascades (CC $v_e v_\tau$, NC):

- Moderate angular resolution 3°-10°
- Good energy resolution: 5-30%

Backgrounds

Atmospheric muons: bundle of downgoing muons from CR interaction

- Background to all neutrino events
- Upgoing events have orders of magnitude less background

Atmospheric neutrino: neutrino from CR interaction

- "Standard candle" for neutrino telescope performance
- Background to astrophysical searches

Atmospheric neutrino are dominated by ν_{μ} for E_{ν} > ${\sim}10~\text{GeV}$

Astrophysical neutrino diffuse flux:

• An excess in neutrino events over the atmospheric neutrino spectrum

p, He, ...

extraterrestrial V

atmospheric μ

• Usually larger significance in cascade channel

Grigory Safronov - Baikal-GVD, Lomonosov Conference 2023

atmospheric V

p, He, ...

HE neutrino astrophysics key results

The presence of TeV - PeV diffuse astrophysical neutrino flux is established by the IceCube telescope with significance well above 5σ (e.g. [Astrophys.J. 928 (2022) 50])

ANTARES diffuse flux significance 1.8σ [PoS(ICRC2019)891]

No neutrino source is established above 5σ so far

However:

- Blazar TXS 0506: **3.5σ**
- Seyfert II galaxy NGC 1068: 4.1σ
- Diffuse flux from galactic plane: $\textbf{4.5}\sigma$

>99% of astrophysical neutrino flux remains unexplained

Deployment of new telescopes is crucial to resolve the diffuse flux origin problem Complimentary field of view for projects located at different lattitude and longitude

[Science 361, 147-151 (2018)] [Science 378, 6619, 538-543 (2022)] [Science 380, 6652, 1338-1343 (2023)]

Baikal-GVD experiment location

- Platform "Ivanovskaya" of Circum-Baikal railway
- Telescope is located 3.6 km away from shore
- Constant lake depth: 1366 1367 m

- Water transparency:
 - Absorption length: 21 23 m
 - Scattering length: 60 80 m
- Stable ice cover over 7 8 weeks in February April: detector deployment and maintenance

Detector consists of 13 independent detectors clusters

Baikal-GVD cluster:

- 8 regular strings, 525 m is instrumented with optical modules (OM)
- 60m radius
- Inter-cluster strings carrying lasers, some instrumented with OMs
- Has its own trigger system
- Cluster 13: 2 strings with experimental high-speed DAQ

Single-cluster and multi-cluster event sets are available

720 m

180 m

180 m

180 m

75 m

Detector components

Optical module (OM):

Each string carries 36 OMs

- 10-inch high Q eff. PMT
- 15 m vertical step
- OM facing the lake bottom

Time calibration systems

• LED in each OM

optical module

- LED beacons at each string
- Isotropic lasers between clusters
- Calibration precision ~2 ns

Geometry calibration system

- Acoustic modems on each string
- Acoustic polling each 1-6 minutes
- OM positioning precision ~ 20cm

buoy

string master module

section master module

acoustic modem anchor Grigory Safronov - Baikal-GVD, Lomonosov Conference 2023

cleaning, data 2019

Event reconstruction I

An event is read-out if coincident signal is found on neighbouring OM An event frame is 5 mks

Most of pulses (or hits) in the event frame are noise from lake water luminiscense:

- Typical pulse rate 20-100 kHz
- ~1 photoelectron (p.e.) charge deposition
- Substantial seasonal variations
- Rate is larger on top layers

Challenge for our MC simulation

Variety of algorithms for noise suppression

Machine learning -based algorithm in development: [arXiv:2210.04653]

Event reconstruction II

Time, location and deposited charge of each pulse are used for the reconstruction

Track reconstruction

- Single-cluster and multi-cluster datasets
- Angular resolution: $\sim 1^{\circ} \sim 0.25^{\circ}$ for tracks longer than 300 m
- Energy resolution: factor 3 for 100 TeV

Cascade reconstruction

- Single-cluster dataset so far
- Angular resolution: $3-3.5^{\circ}$ for $E_{sh} > 10$ TeV
- Energy resolution: $\delta E/E \sim 10\%$ 30% depending on energy and location

track-like, data 2019

Grigory Safronov - Baikal-GVD, Lomonosov Conference 2023

cascade-like, data 2022

First track-like neutrino candidate event sample

First set of single-cluster muon neutrino candidates is based on 2019 data

- Cut-based analysis optimized for low-energy (atmospheric) neutrino, $\langle E_v \rangle \sim 500 \text{ GeV}$
- Runs from April 1st until June 30th 2019
- Results are compared to atmospheric neutrino simulation

Excellent agreement of MC expectation and data

```
[Eur. Phys. J. C 81, 1025 (2021)]
```

Sucessful Baikal-GVD performance validation

Track-like event analysis progress

An improvement in sensitivity by more than a factor of 2 with recent developments

- Improvement in noise suppression techniques
- Improvements in reconstruction accuracy
- More efficient neutrino selection using boosted decision trees (BDT)
- Multi-cluster reconstruction

Massive single-cluster and multi-cluster data/MC reprocessing is ongoing

```
Preliminary: spectacular event with high probability of astrophysical originSeason 2019, Cluster 3, run 590\theta_z= 153.4°Signalness [N_{astro}/(N_{astro}+N_{atm})]: >88%N_{hits}= 30E_{rec}= 103.4 TeVE_{rec}= 103.4 TeVAngular resolution: 0.45 (50%)[68% Cl: 24.9<E<266.3 TeV]</td>Track length: 332.4 m
```

Stay tuned for new results!

Track-like event multi-cluster analysis

Track-like multi-cluster analysis unlocks the full Baikal-GVD potential in angular resolution

First multi-cluster neutrino candidate events start to appear:

Summer 2019	
Clusters 1 & 4	
θ _z	= 125.6°
N _{hits}	= 10
track length	= 399 m
E _{rec}	< 1TeV

all hits in the event

Diffuse flux in cascades I

Majority of the Baikal-GVD data were processed with HE cascade analysis algorithms

Four years dataset: 04.2018 - 03.2022

14328 events E_{sh} >10 TeV, N_{hit} > 11 after quality cuts

All sky analysis:

- $E_{sh} > 70 \text{ TeV}, N_{hit} > 19$
- 16 events were selected
- 8.2 background ev. expected
 - 7.4 μ_{atm}, 0.8 ν_{atm}
- 5.8 v_{astro} ev. expected
- Largest energy event: ~1.2 PeV

All sky diffuse flux significance: 2.22σ

[Phys.Rev. D 107, 042005 (2023)]

Diffuse flux in cascades II

Analysis of upward-going events

- Zenith angle cut: $cos(\theta) < -0.25$
- Loosened cuts: $E_{sh} > 15$ TeV, $N_{hit} > 11$
- 11 events selected
- 3.2±1.0 atm. background ev. are expected
 - 0.5 μ_{atm} , 2.7 ν_{atm}
- Highest energy: 224 TeV

Significance of diffuse flux in upward-going events: 3.05σ !

Main uncertainties

- Absorption length ±5%
- OM sensitivity ±10%
- v_{atm} flux normalisation ±15%

Diffuse flux in cascades III

 $\Phi_{astro}^{\nu+\bar{\nu}} = 3 \times 10^{-18} \phi_{astro} \left(\frac{E_{\nu}}{E_0}\right)$

Extraction of spectrum power and flux normalisation:

Results are in agreement with previous measurements by IceCube and ANTARES

First "non-lceCube" evidence for diffuse v_{astro} flux at above 3σ !

[Phys.Rev. D 107, 042005 (2023)]

Cascade diffuse flux update

Preliminary: An update of analysis adding data from 04.2022 - 03.2023 (10 cluster detector)

• Significance of the diffuse flux 4.31σ (statistical only)

HE cascade sky map

Best fit positions and 90% angular uncertainty regions

Three events close to the Galactic plane (grey line)

The red plus and circle – IC hotspot [Aartsen & et al. ApJ, 835,151 (2017)]

Intriguing coincidence in view of recent IC statement on diffuse flux from galactic plane [Science 380, 6652, 1338-1343 (2023)]

Cascades: TXS0506 coincidence

Upgoing cascade analysis, highest energy event (18.04.2021):

- 224 TeV, 24 hits
- Neutrino source candidate TXS 0506+056 is within 90% containment circle
- Signalness: 97.1% (probability of astro origin)
- Chance coincidence probability (E>200 TeV): 0.0074

Analysis of RATAN-600 radiotelescope data (11GHz) showed increased activity

- IC event registered during $\boldsymbol{\gamma}$ flare
- Baikal event during radio activity
- Probability of IC non-observation: 11%

[arXiv:2210.01650]

Follow-up program

Baikal-GVD follows reported multimessenger high-energy events, e.g.:

GW170817 (LIGO/VIRGO) - neutron star merger, first gravitational waves detection associated with γ /optical/radio signal: time-integrated flux (fluence) limit is set

[Phys. ReV. Lett. 119, 161101] [JETP Letters, v.108, issue 12]

Radio-burst from magnetar **SGR 1935+2154** (28.04.20)

- IceCube fluence limit: 5.2*10⁻² GeV*cm⁻²
- ANTARES fluence limit: 14 GeV*cm⁻²
- Baikal-GVD fluence limit: 2 GeV*cm⁻² [Pos(ICRC2021)946]

Neutrino alert exchange

350

Alerts: events with a high probability of astrophysical origin distributed between telescopes

Baikal-GVD alert system

- Simplified extrapolated calibrations
- Processing delay 3-10 minutes
- Planned to be deployed at the shore to reduce delay
- Presently internal distribution of alerts

Follow-up of IceCube and ANTARES alerts

60 ANTARES alerts followed, 3 correlated cascades [PoS(ICRC2021)1121]

Follow-up of IceCube "astrotracks" events (\sim 20 per year)

- On 8.12.2021 detected cascade from the direction of blazar PKS0735+17 in coincidence with IC211208A
- Delay wrt. IC: 3.95 hrs., E ~ 43 TeV
- Pre-trial significance: 2.85σ, later reduced to 1.13σ
- Astrotelegram published:

https://www.astronomerstelegram.org/?read=15112

Grigory Safronov - Baikal-GVD, Lomonosov Conference 2023

Summary

Baikal-GVD has reached $\sim 0.5 \text{ km}^3$ instrumented volume: 96 strings carrying 3456 OMs

Baikal-GVD is joining the astrophysical neutrino origin quest

- Telescope performance was validated with the atmospheric neutrino flux observation
- First high-energy events are selected in track-like event analysis
- HE cascade event analysis confirms the diffuse flux observation at the level of 3.05σ
- Experiment participates in high-energy alert follow-up and alert exchange

BACKUP

Neutrino as cosmic messenger

Neutrino propagates to cosmological distances and points to its origin

Grigory Safronov - Baikal-GVD, ICPPA 2022

Baikal-GVD 2023 top view

Data stream

Baikal shore center

- Power distrubution
- Data readout hardware/software
- Data-taking management (shifter)
- Data quality control
- Long-term storge of raw data
- Fast reconstruction (to be deployed)

Raw data are transferred from the Shore center to JINR

- Shore center → Baikalsk: 300 Mbit/s radiochannel
- Baikalsk \rightarrow JINR: Ethernet
- Compressed data volume ~40GB per day per cluster
- Full-scale reconstruction at JINR
- Delay due to shore \rightarrow JINR data tranfer: < 1 min