Status of the COMET experiment

Dmitry Grigoriev Budker Institute of Nuclear Physics Novosibirsk, Russia On behalf of the COMET collaboration The COherent Muon to Electron Transition: (COMET) Experiment – the world wide collaboration

The O(200) participants from 41 institutes of 18 countries.

Physics motivation for search of the cLFV with muons

 cLFV is strongly forbidden in SM (Br<<10⁻⁵⁴) so the any signal is clear indication of new physics.

3

The search of the cLFV with muons

Physical Process	Sensitivity k<<1	Sensitivity K>>1	Most sensitive experiment	status
μ ⁺ →e ⁺ γ	High	0	MEG II	running
µ⁺→e⁺e⁻e⁺	Sizable	High	Mu3e	In preparation
µ⁻N→e⁻N	Sizable	High	COMET, Mu2e	In preparation

The sensitivity to a new physics is different in the processes Since a new physics is unknown, it is important to study all 3 with comparable sensitivity The muon to electron conversion has no coincidence and accidental background specific requirements: pulsed high intensive proton beam

ultimate momentum resolution in the detection

Muon to electron conversion experiments

- The idea use the pulsed beam and look for the delayed electron from muon capture on nucleus
- Signal electron is monoenergetic $E_e = (m_{\mu} - m_e - E_{binding}) = 104.97$ MeV (Al target)
- The physics background: decay on orbit (DIO 39%)an extremely high momentum resolution required

The COMET experiment home

•The source of the muons: the high power pulsed proton beam with 8 GeV energy from J-PARC main ring at slow extraction.

The dedicated proton beam line

Time diagram

The time diagram determinates material of muon stopping target: Al ($\tau_{\mu-atom}$ =864 ns)

The COMET experiment

GOAL: Single Event Sensitivity 2.6x10-17 (10000 times improvement) Longer muon transport \rightarrow better charge&momentum selection \rightarrow smaller beam background

The COMET experiment

Testing of prototypes confirms main parameters:

 $\sigma_{\rm F}/{\rm E}<5\%$

Two phases approach

The two phases approach

Parameter	Phase-I	Phase-II
Bending	90 degrees	360 degrees
SES	3x10 ⁻¹⁵	3x10 ⁻¹⁷
Beam power	3.2 kWt	56 kWt
POT	3x10 ¹⁹	3x10 ²¹
Stopped muons on target	1,5x10 ¹⁶	1,5x10 ¹⁸
Running time	O(100 days)	O(1 year)

The Phase-I will be discussed below

The target, pions and muons production and transport

- Key points:
- Target graphite 70 cm long
- Pion capture solenoid 5 T Dia=1324 mm
 - Transport solenoid 3 T Dia=O(500 mm)
 - Detector solenoid 1 T Dia=2156 mm
- Solenoid matching adiabatic with implementation of the special bridge solenoid

2 detectors for Phase-I

- Cylindrical detector (CyDet)
- Base on custom cylindrical drift chamber and sophisticated trigger counters hodoscopes
- The goal: to perform physics measurements

- Planar detector (StrEcal)
- Base on straw tubes and electromagnetic calorimeter as planned for the Phase-II.
- The goal: large prototype test for Phase-II beam background measurements

The both detectors will uses the same solenoid and operates in turn

2 detectors for Phase-I

Cydet: layout

Muon stopping target: 17 aluminum disks of 0,2 mm thickness and 100 mm radius with 50 mm spacing

The main drift chamber parameters

- Material of walls carbon fiber reinforced plastic (CFRP)
- Inner wall radius, length and thickness 496, 1495 and 0,5 mm
- Outer wall radius, length and thickness 840, 1577 and 5 mm
- Sell structure almost square containing 20 alternative stereo layers with angles of 64-75 mrad (innermost and outermost are guards ones)
- Sense wires 4986 Au plated W with diameter 25 μ m (50 g tension)
- Field wires 14562 Al with diameter 126 μ m (80 g tension)
- Gas mixture He:i-C₄H₁₀ (90:10%)
- Momentum resolution better 200 keV/c at 105 MeV/c

Trigger hodoscopes

- Red Ultra fast scintillator EJ-230 300x90x5 mm
- Blue Cherenkov counter base on UV-transparent acrylic plastic 300x90x10 mm
- Both scintillator and Cherenkov hodoscopes consists of 2 layers, with shifted on half of width counters (start data taking without Cherenkov hodoscopes)
- Readout by SiPM

StrEcal detector

The proposed layout of the detector for Phase-II The blue – planes of the straw tubes The pink – wall of the ecal crystals

StrEcal detector

- Straw tubes:
 - Diameter 9.75 mm

Outer wall – 20 microns thick Al-coated mylar (a thinner wall is under study)

Anode wire – gold plated tungsten 25 microns diameter

Length – from 692 to 1300 mm

Gas mixture – Ar-Ethane 50:50

StrEcal detector

- Electromagnetic calorimeter
 - Scintillator 20x20x120 mm LYSO crystals
 - Light readout Hamamatsu APD S8864-1010 with 10x10 mm sensitive area
 - Electronics custom design low noise fast amplifiers
 - Location crystals and APD are inside vacuum volume to minimize multiple scattering and noise while electronics is outside vacuum for easier cooling
 - Measured energy resolution better than 5% for the 105 MeV electrons
 - ~500 crystals will be used for Phase-I (out of a total 1920 needed for Phase-II).

Cosmic Ray Veto (CRV)

Yellow: plastic scintillators (4 layers) Purple: RPC detector

The RPC design in progress

float glass

PCB

Full size prototype module is made and tested with radioactive source The measured cosmic ray suppression 99.86% is close to the design value

1.2 mm gap

Al Honeycomb cassette

The important issue: radiation hardness

Expected irradiation during Phase-I Neutrons – up to 10¹²/cm⁻² (1 MeV equivalent) Gammas – up to 1 kGy

All parts were tested many times As a result, the proper ones are selected

The neutron irradiations were done by using of 3 MeV deuteron beam on Be target at tandem accelerator (Kobe university)

The gamma irradiations were done with 60Co source At Radioisotope Research Center, (Tokyo Institute of Technology)

The Phase-I performance (based on detail MC study)

Event selection	value	Type	Background	Estimated events
Online event selection efficiency	0.9	Physics	Muon decay in orbit Radiative muon capture Neutron emission after muon capture	0.01
DAQ efficiency	0.9	Prompt Beam	Charged particle emission after muon capture * Beam electrons	e < 0.001
Track finding efficiency	0.99		 Muon decay in flight Pion decay in flight Other beam particles 	
Geometrical acceptance & Track quality cuts	0.18		All (*) Combined Radiative pion capture Neutrons	$\leq rac{0.0038}{0.0028} \ \sim 10^{-5}$
Momentum window	0.93	Delayed Beam	Beam electrons Muon decay in flight Pion decay in flight	~(
Timing window	0.3	Others	Radiative pion capture Antiproton-induced backgrounds	~ 0.0015
Total	0.041	Total + 7	bis estimate is currently limited by computing res	< 0.01 0.032

Can reach 3×10⁻¹⁵ SES in 150 days

The brief status of the Phase-1 preparation

- Magnets
 - Pion Caption Solenoid almost ready
 - Muon Transport Solenoid successful commissioning
 - Detector Solenoid will be made by 2024 spring
- CyDet
 - Drift chamber equipped with electronics and tested with cosmics
 - Trigger hodoscopes: the design and tests are almost finished
- StrECAl
 - Straw tubes Plane 1 made and tested with beam, Planes 2&3 in production
 - ECAL almost all crystals are in hand, mechanical parts ready for mass production
 - Electronics needs minor modifications before mass production
- Trigger and DAQ the design is on finish line
- Support Structure Conceptual design is almost done

The provisional scheduler of Phase-1

Phase- α : the first beam seen by COMET!

Data taking:
✓ February 2023
✓ March 2023
❑ Possibly fall 2023?

The Phase- α

The Goal: Commissioning run to study the new beamline

- Investigation of the secondary beam in the experimental area
- Comparison with simulation and validation of simulation
- Studies of the 90°-curved Muon Transport Solenoid (TS) (operates at 1.5 T solenoidal and 0.05 T dipole fields)

The Phase-α

- The simple beamline
- No Pion Capture Solenoid
- 1.1 mm-tick C/C composite Pion Production Target
- The beam mask with two moving collimator slits for study of the transport optics.

Phase-α Primary Beamline

Beam mask

Pion production target

The Phase- α : proton beam

before

after

The proton beam successfully extracted!

- ✦ Slow-extracted & pulsed 8 GeV proton beam at 260 W
- ★ Beam tuning was well performed
- ★ Its beam profile was measured
- ✦ Observed hits on Proton Beam Monitor

New TiO₂ Sensor for Proton Monitor

Phosphor plate response before and after beam tuning

The Phase-α: detectors

Straw Tube Tracker Measure beam position and direction Range Counter Identify negative muons and generate trigger signals.

The Phase- α : muon beam monitor

Scintillating fiber hodoscope

Hodoscope detector with 1 mm² plastic scintillating fibers 30×30 cm² area holds 128+128 fibres aligned to form a plane readout by SiPMs with dedicated control & readout electronics 3.3 nsec time resolution Good hit rate tolerance and capability for the experiment.

The Phase- α : straw tube tracker

A single Phase-I straw 'station' was assembled for Phase-α
480 straw tubes alined in total on the X & Y axes
Ar & C2H6 (50:50) gas mixture is used
It was the first opportunity for commissioning a Phase-I detector!
Full readout chain was tested

The Phase-α: range counter

(Schematic is not in scale)

Multi-layered plastic scintillating counters measuring muon decay time

Change the momentum range to measure with different thicknesses of a graphite degrader Reconstruct the number of muons stopped in a copper muon stopper Negative muon's life time in copper is about 160 ns compared to about 2μ s in lighter materials Generated trigger signals when a particle hit *BDC & TO* with no simultaneous hits in *T1 / T2*.

The Phase-α: results

- Negative muons transported via the 90°-curved Transport Solenoid!
- The signal muon decay component was observed
- Reconstructed the number of stopped negative muons counted from the fitted value:
 - only statistical uncertainties plotted
 - the spectrum shape is close to the expectation
- These measurements contribute to the upgrade of the hadron production model studies.
- The reproducing model the data will be chosen for simulation studies for Phase-I & -II.

The Phase-α: Muon beam 2D profile

Seen from downstream

Moved the Range Counter two-dimensionally by 25 cm step. Muons with a momentum of around 40 MeV/c were measured. Muons in this momentum range are expected to concentrate around the center in the vertical direction.

Relative difference of number of muons stopped in the muon stopper among the positions.

Conclusion

• The Phase-1:

- preparation is in a good shape but still many issues must be solved
- The goal is to be ready for data taking at March 2026

• The Phase-α:

- the first excited data were collected
- data analysis and simulation are in progress

The 2023 is the happy year for COMET! Stay tuning for 2026!

Thanks for your attention!

Backup slides

Trigger for Phase-1

CYDET Trigger

StrECAL Trigger

DAQ for Phase-1

CyDet

StrEcal

DAQ is based on standard networking

MIDAS DAQ system for run control

ECAL electronics

