

Status and preparations for the first physics with the MPD

Victor Riabov for the MPD Collaboration

MPD at NICA

♦ One of two experiments at NICA collider to study heavy-ion collisions at $\sqrt{s_{NN}} = 4-11$ GeV

- Expected beam configuration in first year(s) of operation:
 - \checkmark not-optimal beam optics with wide z-vertex distribution, $\sigma_z \sim 50~cm$
 - ✓ reduced luminosity (~10²⁵ is the goal for 2023) → collision rate ~ 50 Hz
 - ✓ collision system available with the current sources: C (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86), Xe (A=124-134), Bi (A=209)
 - ✓ First beams: Bi+Bi in 2025

NICA Relativistic heavy-ion collisions

- At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- ↔ At large μ_B , 1st order phase transition is expected → QCD critical point
- BM@N and MPD will study QCD medium at extreme net baryon densities
- ✤ Many ongoing (NA61/Shine, STAR-BES) and future experiments (CBM) in ~ same energy range

Activities in the MPD Hall

Top platform (cryogenics, power supplies, control system)

Temporary scheme of Solenoid cooling

Chimney

Cryogenic platform

Cryogenic pipes

Thermostable rooms, LN tank

✤ Yoke, TRIM coils, top platform, chimney assembled, ongoing tests of the refrigerators and control Dewar

- Pipes, LN2 tanks, LHe pipe, heaters and other equipment re-ordered in Russia and delivered
- Cooling to LN and LHe temperatures by the end of 2023

V. Riabov @ Lomonosov conference - 2023

NICA Time Projection Chamber (TPC)

- TPC cylinders, central membrane and service wheels are ready, final vessel assembly by the end of 2023
- Read-out chambers (ROCs) 24 tested chambers in stock + 4 tested spare chambers

- ✤ Gas system ready testing
- ✤ TPC FE electronics status:
 - ✓ 65% manufactured (967 pc)
 - ✓ no more problems with components → 100% available

- ✤ On critical path:
 - ✓ TPC rails prod./inst. October-November, 2023
 - ✓ TPC cooling system (INP BSU, Belarus) FEE cooling ready by November, 2023; thermostabilization panels by September, 2024

TPC installation in the MPD: end of 2024

Time-of-Flight (TOF)

- ✤ The production of MRPC detectors was completed in September 2022, (107%) chambers
- ♦ TOF modules are assembled \rightarrow long-term cosmic ray tests
- Electronics & cables, HV distribution modules, installation equipment in stock
- ♦ Started assembly of the TOF gas system in the MPD hall in September 2022 \rightarrow finished in summer, 2023

Storage of tested TOF modules

TOF installation bench in LHEP

◆ The equipment for installing the modules in the MPD is ready for use and stored in the laboratory

✤ TOF installation in the MPD: September, 2024

NICA Electromagnetic calorimeter (ECAL)

- Sampling calorimeter with projective geometry (70 tons):
 - \checkmark 25 sectors (50 half-sectors); 2400 modules; 38,400 "shashlyk"-type Pb-Sc towers with segmentation of 4x4 cm²
- ✤ 1600 modules (66%) have been produced (800 in Russia + 800 in China)
- ♦ Production of additional 400 modules in Russia is ongoing, use Russian-made WLS fibers \rightarrow 83% in total
- ✤ Mass production of half-sectors in JINR by international team, 18 half-sectors assembled

Half-sectors at different stages of assembly

ECAL installation in the MPD: August, 2024

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

11 Countries, >500 participants, 35 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research;

A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico; Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa, Mexico; Universidad de Colima, Mexico: Universidad de Sonora, Mexico; Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; National Research Nuclear University MEPhI , Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**

Collaboration activity

- MPD publications: over 200 in total for hardware, software and physics studies (SPIRES)
- ✤ MPD @ conferences: presented at all major conferences in the field
- ✤ First collaboration paper recently published EPJA (~ 50 pages): Eur.Phys.J.A 58 (2022) 7, 140

Status and initial physics performance studies of the MPD experiment at NICA

MPD physics program

 G. Feofilov, A. Aparin Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 V. Kolesnikov, Xia Spectra of light properties of the second second	anglei Zhu ght flavor and nuclei bectra hypernuclei yields and yield d chemical the event Phase Diag.	 K. Mikhailov, A. Taranenko Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 			
D. Peresunko, Chi Yang Electromagnetic pr • Electromagnetic calorimeter	r obes meas. barrel	Wangmei Zha, A. Zinchenko Heavy flavor • Study of open charm production • Charmonium with ECAL and central barrel				
 Photons in ECAL and central Low mass dilepton spectra in modification of resonances a intermediate mass region 	n-medium and	 Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 				

Hot topics

- Critical fluctuations for (net)proton/kaon multiplicity distributions
- Solution Solution Control A+A collisions (Λ, Ξ, Ω)
- Spin alignment of vector mesons (K^{*}(892), $\phi(1020)$)

V. Riabov @ Lomonosov conference - 2023

Hyperon global polarization

- ✤ BiBi@9.2 GeV (PHSD), 15 M events → full event/detector simulation and reconstruction
- ❖ Global hyperon polarization (thermodynamical Becattini approach [1]) by the event generator
 → reproduce at generator level basic features measured by STAR

• Reconstruction of Λ global polarization, work in progress, BiBi@9.2 GeV:

- Analysis performed using 'Polarization wagon' of the Analysis Train
- Measured polarization is consistent with the generated one
- First global polarization measurements for $\Lambda/\overline{\Lambda}$ will be possible with ~ 10M data sampled events

[1] F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32

V. Riabov @ Lomonosov conference - 2023

NICA

Charged identified light hadrons

- Probe freeze-out conditions, collective expansion, hadronization mechanisms, strangeness production ("horn" for K/ π), parton energy loss, etc. with particles of different masses, quark contents/counts
- Charged hadrons: large and uniform acceptance + excellent PID capabilities of TPC and TOF

0-5% central AuAu@9 GeV (PHSD), 5 M events \rightarrow full event/detector simulation and reconstruction

✓ sample ~ 70% of the $\pi/\text{K/p}$ production in the full phase space ✓ hadron spectra are measured from $p_T \sim 0.1$ GeV/c

Neutral identified light hadrons

• Neutral mesons (π^0 , η , K_s, ω , η '): ECAL reconstruction + photon conversion method (PCM)

AuAu@11 GeV (UrQMD), 10M events \rightarrow full event/detector simulation and reconstruction

 \checkmark extend p_T ranges of charged particle measurements

✓ different systematics

MPD will be able to measure differential production spectra, integrated yields and $\langle p_T \rangle$, particle ratios for a wide variety of identified hadrons (π , K, η , ω , p, η')

First measurements will be possible with a few million sampled heavy-ion events

Short-lived resonances - I

★ Resonances probe reaction dynamics and particle production mechanisms vs. system size and √s_{NN}:
 ✓ hadron chemistry and strangeness production, lifetime and properties of the hadronic phase, spin alignment of vector mesons, flow etc.

increasing lifetime									
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	(1020)			
c τ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2			
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$			

BiBi@9.2 GeV (UrQMD) after mixed-event background subtraction:

Phys.Scripta 96 (2021) 6, 064002

- ✓ MPD is capable of reconstruction the resonance peaks in the invariant mass distributions using combined charged hadron identification in the TPC and TOF
- ✓ decays with weakly decaying daughters require additional second vertex and topology cuts for reconstruction

Short-lived resonances - II

• Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 1

- ✤ Reconstructed spectra match the generated ones within uncertainties
- First measurements for resonances will be possible with accumulation of ~ 10^7 Bi+Bi events
- ♦ Measurements are possible starting from ~ zero momentum \rightarrow sample most of the yield
- Measurements of $\Xi(1530)^0$ are very statistics hungry

Weak decays of strange baryons - I

- Strangeness production probes the EoS, phase boundaries and onset of deconfinement
- Antibaryon-to-baryon ratios at intermediate momenta are sensitive to CEP (a falling trend in contrast to a constant behavior in the scenario without CEP)
- ✤ BiBi@9.2 GeV (PHSD):

Strange baryons can be reconstructed with good S/B ratios using charged hadron identification in the TPC&TOF and different decay topology selections

Weak decays of strange baryons - II

- Capability to reconstruct baryon yields down to low momenta with reasonable efficiencies
- ✤ High-p_T reach is limited by statistics
- ♦ Reconstructed spectra are consistent with the generated ones \rightarrow MC closure test passed

Reconstruction of hypertritons

BiBi@9.2 GeV (PHQMD), 40 M events \rightarrow full event/detector simulation and reconstruction

Phys.Part.Nucl.Lett. 19 (2022) 1, 46-53

✤ First measurements for hypertriton will be possible with accumulation of ~ 50 M BiBi@9.2 events

Heavier hypernuclei

↔ Monte Carlo events enriched with hypernuclei distributed by $(\eta-p_T)$ phase space predicted by PHQMD

Signals for heavier hypernuclei can be reconstructed with the equivalent statistics of ~140 M events

Collective flow at NICA energies

- Generated during the nuclear passage time $(2R/\gamma)$ sensitive to EOS
- RHIC @ 200 GeV $(2R/\gamma) \sim 0.1 \text{ fm/c}$
- ♦ AGS @ 3-4.5 GeV (2R/γ) ~ 9-5 fm/c
- * v_1 and v_2 show strong centrality, energy and species dependence

- ✓ $\sqrt{s_{NN}}$ ~ 3-4.5 GeV, pure hadronic models reproduce v_2 (JAM, UrQMD) → degrees of freedom are the interacting baryons
- ✓ $\sqrt{s_{NN}} \ge 7.7$ GeV, need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

System size scan for flow measurements is vital for understanding of the medium transport properties and onset of the phase transition

V. Riabov @ Lomonosov conference - 2023

Phys.Rev.Lett. 112 (2014) 16, 162301

 \checkmark models do not reproduce measurements

NICA Performance for v_1 , v_2 of identified hadrons

✤ UrQMD, BiBi@9.2 GeV

• Reconstructed and generated v_1 and v_2 for identified hadrons are in good agreement for all methods

ICA Running in the fixed-target mode

• Fixed-target mode: one beam + thin wire (~ 100 μ m) close to the edge of the MPD central barrel:

- ✓ extends energy range of MPD to $\sqrt{s_{NN}}$ = 2.4-3.5 GeV (overlap with HADES, BM@N and CBM)
- ✓ solves problem of low event rate at lower collision energies (only ~ 50 Hz at $\sqrt{s_{NN}}$ = 4 GeV at design luminosity)
- ✓ backup start-up solution (too low luminosity, only one beam, etc.)

NICA Detector performance in FXT mode

- Existing trigger system is even more efficient compared with the collider mode (FFD + FHCAL + TOF)
- MPD detector provides good enough acceptance for identified hadrons at midrapidity $(y_{CMS} \sim 0)$:

MPD detector is able to run in the fixed-target mode in the default configuration

Summary

- Preparation of the MPD detector and experimental program is continued
- ♦ Commissioning and start of data taking \rightarrow 2025
- Further program will be driven by the physics demands and NICA capabilities

BACKUP

RHIC BES program

♦ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$

Au+Au Collisions at RHIC											
Collider Runs					Fixed-Target Runs						
	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Y _{beam}	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV	2	Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV	RA .	Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
				2		12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21
				•							•

- A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
 - ✓ Au+Au collisions only
 - ✓ Among the fixed-target runs, only the 3 GeV data have full midrapidity coverage for protons (|y| < 0.5), which is crucial for physics observables

Trigger simulation, BiBi@9.2 GeV

- Trigger system consists of FFD (2.7 < $|\eta|$ < 4.1), FHCAL (2 < $|\eta|$ < 5) and TOF ($|\eta|$ < 1.5)
- MPD trigger system challenges at NICA energies:
 - low multiplicity of particles produced in heavy-ion collisions
 - particles are not ultra-relativistic (even the spectator protons)
- ✤ DCM-QGSM-SMM, BiBi@9.2: trigger efficiency is 87-98% for different trigger configuration
- FFD trigger definition:
- \checkmark at least one fired module per side
- ✓ meaningful times, 0 < time $_{E,W}$ < 50 ns
- ✓ reconstructed z-vertex, |z-vertex| < 140 cm

FHCAL trigger definition:

at least one fired module per side

meaningful times, $0 \le time_{EW} \le 50$ ns

reconstructed z-vertex, |z-vertex| < 150 cm

- Trigger system of the MPD based on FFD, FHCAL and TOF detectors provides high efficiency in HIC
- ✤ Simulation of the MPD trigger system is now included in the Analysis Train

 \checkmark

 \checkmark

- ✤ A dedicated wagon in the Analysis Train provide centrality for all analyses based on TPC multiplicity
- * Light collision systems: ~ 50% for CrtGovanishingly small for dtd

28

TOF trigger definition:

at least one fired MRPC

Fixed target configurations

• With a target located at z = -150 cm

With a target located at z = -115 cm

- In heavy-ion collisions:
 - ✓ MPD trigger system based on the FFD, FHCAL and TOF provides high efficiency in the FXT mode
 - ✓ potential problems with online T0 and vertex at lower beam energies

NICA

(Di)electrons

- ✤ Dielectron spectra are sensitive probes of the deconfinement and the chiral symmetry restoration
- AuAu@11 GeV (UrQMD for background & PHQMD for signal)

