

Measurements of π^0 elliptic flow in Cu+Au collisions

E.V. Bannikov, A.Ya. Berdnikov, Ya.A. Berdnikov, D.O. Kotov, Iu.M. Mitrankov, M.M. Mitrankova, D.M. Larionova

Peter the Great St.Petersburg Polytechnic University (SPbPU), Russia

Quark-gluon plasma (QGP)

*Agnes Mocsy(Pratt Inst. and Frankfurt U., FIAS), Paul Sorensen(Brookhaven) (Aug, 2010)

The observables are used to investigate QGP's properties.

Quark-gluon plasma (QGP)

*Agnes Mocsy(Pratt Inst. and Frankfurt U., FIAS), Paul Sorensen(Brookhaven) (Aug, 2010)

Collision geometry

Centrality:

- a) Central collisions;
- b) Peripheral collisions.
- **b** impact parameter.
- O Participant-nucleons
- Spectator-nucleons

Collision geometry

Centrality:

- a) Central collisions;
- b) Peripheral collisions.
- **b** impact parameter.
- O Participant-nucleons
- Spectator-nucleons

Reaction plane (RP):

- ϕ azimuthal angle of particle,
- z beam direction,
- Ψ_{RP} azimuth of the reaction plane.

Collision geometry

Centrality:

- a) Central collisions;
- b) Peripheral collisions.
- **b** impact parameter.
- O Participant-nucleons
- Spectator-nucleons

Reaction plane (RP):

 ϕ – azimuthal angle of particle,

z – beam direction,

 Ψ_{RP} – azimuth of the reaction plane.

Collision system:

a) Symmetric collisions;

b) Asymmetric collisions.

Azimuthal anisotropy

Measurement methods of v_2

«Invariant mass fit method»:

«Subtraction method»:

24.08.2023

The $v_2/\varepsilon_2 N_{part}^{1/3}$ values are consistent within the uncertainties in Cu+Au and Au+Au collisions

The $v_2/\varepsilon_2 N_{part}^{1/3}$ values are consistent within the uncertainties in Cu+Au and Au+Au collisions

The elliptic flow values are nonzero at $p_T > 5 \ GeV/c$

The $v_2/\varepsilon_2 N_{part}^{1/3}$ values are consistent within the uncertainties for all centrality classes in Cu+Au collisions

The $v_2/\varepsilon_2 N_{part}^{1/3}$ values are consistent within the uncertainties for all centrality classes in Cu+Au collisions

• The elliptic flow values are nonzero at $p_T > 5 \; GeV/c$

Conclusions

- ✓ The π^0 elliptic flow values in Cu+Au collision system at 200 GeV were obtained;
- ✓ It was found that the $v_2/\epsilon_2 N_{part}^{1/3}$ values for π^0 are consistent within the uncertainties in Cu+Au and Au+Au collisions and in all centrality classes => **the size and geometry of the collision system does not seem to affect the** $v_2/\epsilon_2 N_{part}^{1/3}$ **values for** π^0 ;
- ✓ Obtained v_2 values for π^0 are nonzero at high transverse momentum ($p_T > 5 \ GeV/c$). It could be explained in terms of **parton energy loss models**.

Conclusions

- ✓ The π^0 elliptic flow values in Cu+Au collision system at 200 GeV were obtained;
- ✓ It was found that the $v_2/\epsilon_2 N_{part}^{1/3}$ values for π^0 are consistent within the uncertainties in Cu+Au and Au+Au collisions and in all centrality classes => **the size and geometry of the collision system does not seem to affect the** $v_2/\epsilon_2 N_{part}^{1/3}$ **values for** π^0 ;
- ✓ Obtained v_2 values for π^0 are nonzero at high transverse momentum ($p_T > 5 \ GeV/c$). It could be explained in terms of **parton energy loss models**.

Thank you for your attention!