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Electric-magnetic duality, Dirac string and charge quantization

Maxwell FE — cosOFE + sinB, is V|_oIat_ed by Dlrfac z—w = (V- z'eA)zw Ve
S-duality 7 _, _ gin0F + cos 0 string in Schrodinder eq. Ot 2m A
. Transformation of the wave
Vector-potential for monopole: function is required . L
A—A-V
Ay = g (1-— COSQ)é 0<6<7/2 North gauge - X
4drr  sinf ¢ related by
- 1 Y T = Y
Ag = — 9 | Jr.cosﬂ)éqﬁ 7T/2§ 0 < 7 South gauge Ay — As = =V, X=—7-9,
Arr  sinf 27
An and Ag on the overlap region is indeed a gauge transformation. We have at 0 = 7/2
g:] BN-dS—I—/BS-dS:/(AN—AS)-dlzx(O)—X(ZW)
N S E
Non- observability by quantum charge leads to Dirac quantization ¢—%€9 — 1 or eg = 2mn :Z2 duality
Non-Abelian generalizations (t’"Hooft —Polyakov monopole) % eg = 27n
N=2 supersymmetry: central charges {Qai, Qg,} = 0i;75 5P + 0asUij + (V5)ap Vi Ui = €;;0Qe, Vii = €;0Qm

N=4 supersymmetry: dilaton and axion, SL(2,R) classical duality broken to SL(2,2)

SL(2,R) classical S-duality in lIB supergravity theory relevant to strong-weak AdS/CFT correspondence



Sourceless magnetic fields imitating monopoles

Magnetic monopole from cutting the solenoid Magnetically charged electrovacuum black hole
carrying magnetic flux

Dirac string

Solenoid models “physical” Dirac string

When gravity is turned on, DS becomes heavy



Gravimagnetic field
With special parametrization of linearized metric

2 4 2 -
—ds® = —¢? (1 — —QS) dt* — —(A - dx)dt + (1 + C—2@> 0;;dx’ dz’
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C
N 10 (/1
and definitions E=-V¢ - -— [ ZA ), B=V x A,
c Ot \ 2
=2 — P . — J
one can present Fierz-Pauli equations in the Maxwell form:
10 /1
V- E = 4nGp, V X E= oot (§B) ’ The difference is that Maxwell equations can

be easily modified to admit magnetic monopoles,
the corresponding modification of linearized

1 1 1 4 Einstein equations is more subtle
V- (—B) :O, V x (—B) :_2E+_7TGJ,
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Gravitational S-duality in linearized theory

Metric Fierz-Pauli theory does not exhibit S-duality but allows for suitable extension

- 1 o8 1 =08 From here find Einstein linearized tensors defining sources
RWPG = 5 Suwvap R e RWPG — __5w/a5R po G = 81GO G = 81T
2 2 py — OTC [ pr — OT uv s
(duality resp. Lorentz indices) ~ ~
— — —
Gravitational S-duality would mean Ryvpor = Rywpo, Rywpo Rywpor
T — O, O — =1,
To deal with magnetic sources, define 862(1)@57 — —167TG@5,),, @aﬁ,y = —Q)ﬁo‘,y.
T PO o 1 o o «
This generates the cyclic identity for dual R: Pre =P+ 5(5pa(1) —0 aq)p)’ PP = 7 .
- - - - 1 -
_ pok — YpoK
(Ryuvap + Rupva + Ruapy) = 35[*’&’5] Ryupon = oEwap (7" Rupo) so to maintain duality one has to add the
1 source to initial cyclic identity for consistency:
= —58%@5(2]{?# — (Sq{#R) — SWGEUQ&YTW#.
Rﬁua;g + RMQUQ + R#agy = —87TG€L,Q5/},@/Y#, Rnucxﬁ + Rﬁﬁua + R,uo:ﬁv — SWGguaﬁ'rTln
Oc Rys508 + Oa Ryspe + 03 Rysea = 0, Oc Rys50p + On Ryspe + 08 Rysea =0,

[0909.0542] Why not a di-NUT? or Gravitational duality and
rotating solutions (arxiv.org) (Argurio and Dehouck)

Metric will depend on the choice of magnetic sources



https://arxiv.org/abs/0909.0542
https://arxiv.org/abs/0909.0542

Ehlers group: 3D non-linear gravitational S-duality . ... rar-ac] 31 Dec 2008

Consider vacuum Einstein equations R, = 0. For stationary metrics admitting a time-

like Killing vector field, Lxg,, =0, K = 0;, the line element can be presented as
ds® = —e*(dt + w;dx")? + e Chyda’ da’
where the scalar £, the three-vector w; and the three-dimensional metric h;; depend only

on spatial coordinates z*. Then the equations of motion coincide with those of the three-
dimensional gravitating non-linear sigma-model S, = f [Rg (h) — Gap(P)0;9*0,PF hY ] Vhdz,

with two scalar fields @4 = (€, ), where the twist potential y is related to the one-form

w; by the dualization equation dy = —e* % dw, and the target space is a coset space
SL(2,R)/SO(1,1), the corresponding metric being  d[? = G45dPOP" = 1 (d£2 4 e—2€dX2) .

the field equations being invariant under the Ehlers group SL(2, R) acting 2

1) twist shift (gauge) x — x + Ay, i) and ii) do not change 4d solutions

i) scaling € = £+ X;, x — ey, iii) transforms Schwarzschild to
Taub-NUT, it can be interpreted

iii) proper Ehlers transformation (x —de*)™ — (x — €)™ + A5, 5 non-linear S-duality in 3d.

the last one generating the Taub-NUT metric from Schwarzschild. In 4d situation is obscured by
the Misner string


https://arxiv.org/pdf/0901.0098.pdf

Breaking of S-duality by classical solutions: Taub-NUT

In full non-linear GR this “almost” solution is candidate metric for gravitational dyon with mass M, and S-dual mass “n
2

5 T+ (n2 + 7"2) d)? , B, =0 except for

f(r) the polar axis!
under linearisa-

. tion one obtains

i a distributional

' string-like

source

ds? = — F(r)2(dt — 2n (cos @ + C) dip)? +

2 9
fr)2 = L 2GMr — i,

n? + r? |
n is gravimagnetic charge (NUT), S duality is not manifest
in this solutions, though it is the symmetry of the action *

C=-1 C=0 C=1

c-parameter Misner string is shifted by large gauge transformation t—t+2n(C —Ce.
Is Goldstone? ) qicner time identification with period S87n is needed to match C=-1 and C=1 charts

( but thrn Hausdorf axiom violated on the horizon)

C. W. Misner, “Taub-nut Space As A Counterexample To Almost Anything,” (1967)
Bonnor’s interpretation: Misner string IS physical singularity (Bonnor, 1969)

G. Clement, D. Gal'tsov and M. Guenouche, “Rehabilitating space-times with NUTs,” Phvs. Lett. B 750. 591 (2015)

Supergravities require NUTty solutions for consistency with SUSY algebras (central charges)



Clement, DG, Genouch Phys.Rev. D93 (2016) 024048
NUT wormhole d (2010)

This is Reissner-Nordstrom metric with NUT (know as Brill solution) with four free parameter almost”solution

of Einstein-Maxwell,

ds* = —f(dt —2n(cos® + C)dp)* + f dr* + (r* + n*)(d9? + sin® Odp?®),  except for the axis

r—m)? + b qr + p(r* —n?)/2n
A = &(dt —2n(cosd + C)dy). :( : — :
(dt — 2n( o). f = T T
62 =q2—|-p2 (b2:q2+p2_m2_n2)' U _ det
R™R,, = (r2 n n2)4’
If bA2>0 (overcharged) no horizon, r can be continued to r<O - wormhole In the bulk!

, No singularity at r=0
Large gauge transformation t — t+ 271(0 _ O’)@ |

changes distributional sources

{n spite of Misner st-ring, Ku = — 2n(1 + C.COS 0) cos cpat — sin gy — cos p ot 00, .
isometry algebra is sin ¢
2n(1 + C'cos ) si
SO(3)X R Ky = — n(l+ .CC;S )Sm(’o& + cos pdy — sin p cot 00, ,
sin

K(z) — (9904—2710(‘%,
Ky = 0y,



Weyl coordinates Using Weyl coordinates one can

explore the structure of the axis
ds® = —e?Vdt? + 72V [62'7’(d,02 +dz?) + p2d<b2}

This may be recognised as Laplace’s equation V2U = 0 for an axially sym-

U PP + -U P + U 2z — 0 metric function in an unphysical Euclidean 3-space in cylindrical polar co-
P ordinates, though the coordinates p, z,  here have a different meaning.
Once U is known, one has to integrate a system y , = p (U’p2 + U,ZQ) , v, =2pU, U,

“axis” on which p = 0 is regular if,
and only if, v — 0 as p — 0.7 If this condition is not satisfied for some value
or range of z, then some kind of singularity occurs at these points.

Schwarzschild solution in Weyl coordinates reads [ — % log (R + z — m)

Ri+z4+m

2 2 +

eQU:R—I—_I_R—_Qm 627:(R++R—) —4m with R2:p2—|—(2:|:m)2
R, +R_+2m’ AR, R_ =

which is formally the Newtonian potential for a finite rod, located along

the part of the axis p = 0 for which |z| < m, whose mass per unit length is

o = +. Thus the “rod” has length 2m and its total mass is m.




Clement and DG
Rod structure of stationary axisymmetric electrovacuum 1707.01332.pdf (arxiv.org)
Harmark, Reall 2004

In Weyl coordinates x“, p, z, where z* = t, ¢ ds* = Gap(p, 2)dzdx’ + €% (dp? + dz?),
where the Gram matrix G4, and v are functions of (p,z), and p = +/| det G| .

it is clear that the Gram matrix is non-degenerate as long as p > 0. At p = 0, it degenerates,

so the kernel of the boundary matrix G(p = 0, z) becomes nontrivial, i.e., dimker G(0, z) > 1.

It can be proved that, if the kernel has dimension higher than one, there will be a strong
curvature singularity on the axis If dimker G(0, z) = 1 exactly, except for a finite number

of isolated points z,, n = 1,..., N, one encounters only weak distributional singularities on
the polar axis, or no singularities at all. The above isolated points, called turning points, will

be ordered as z; < z9 < .-+ < zyn. The set z, divides the polar axis z in NV + 1 intervals
(—o0, 21, |21, 22], - - -, 2N, +00) which are called rods (we will label two semi-infinite rods by

n = =+, and the remaining finite ones by an index n corresponding to the left bound of the
interval). For each rod one defines the eigenvectors I, € R?, belonging to the kernel of G(0, z):

L, = 0 + Q,0, Gap(0,2)% =0, 2z € |24, 2nt1] -
where (2, is the constant angular velocity of the rod. In Lorentzian spacetime the norm [# of this

vector can be negative, positive or zero for p > 0, the associated rod being qualified as timelike,
spacelike or null. The first are event horizons, the second represent cosmic strings or Misner strings


https://arxiv.org/pdf/1707.01332.pdf

Aligned

black holes
supported by
strings possibly
carrying magnetic
or gravimagnetic
fluxes BH2

BH3 \

BH1

Rods
and their directions

Gerard Clement and DG

[2307.06282] The first law for stationary axisymmetric multi-
black hole systems (arxiv.org)

Each black hole has M,N,Q,P, a as parameters
and the corresponding rod direction is timelike

Each string corresponds to spacelike rod

Each rod direction specifies certain spacetime
Killing vector (linear combination of k and m)
and the axis serves Killing horizons for them.
Parameters of rods are constant surface gravity
and angular velocity

External rods correspond to Misner strings
if the sum of NUT parameters of all BH is non-zero

Using Komar integrals one can calculate parameters
M, Q, a of each black hole, but not P and N. These
are computed using Komar integrals

for string segments. When there are magnetic and
gravimagnetic fluxes, parametes P and N can not
be prescribed to black holes, they are delocalized.
Stings also can carry electric charges


https://arxiv.org/abs/2307.06282
https://arxiv.org/abs/2307.06282

Conserved charges of rods

The spacetime Killing vectors associated with the rods share with them the

same causal nature (timelike for horizons and spacelike for defects) and they become null on the
rods themselves. Thus both timelike and spacelike rods are Killing horizons with certain surface
gravities, which together with the angular velocities (1,, are constant along the rods.

The total Komar mass, angular momentum and electric charge of a stationary axisymmetric

configuration are given by the integrals over > ,.:

1 1
M=—4¢ D'K'dS,,, J=——¢ D’m'dy

1
v Q - FHdY;
47 Jv 8T Jx H

A Ju He

where k# = 0; and m# = ¢/ are the Killing vectors associated with time translations and
rotations around the z-axis, D" is the covariant derivative and F'*” is the Maxwell tensor. Using
the Einstein-Maxwell equations and the Gauss-Ostrogradsky theorem, the Komar charges can
be expressed as the sums of integrals over the various rods X, (two-surfaces spanned by the

' : 1 - . .
coordinates z, @) M, — % [g@jgm Digra + 2(AF — A, Fup)] o
M=S"M, J=J, @=%Q, 8"'T12n

" " n _ ij tagn. it _

1

Q, = —f Fidy;.
AT Js,



the axisymmetric Weyl-Papapetrou parametrization
ds* = —F(dt —wdp)?+ F1[e?*(dp* + d2?) + p*dy?),
A = wdt+ Aydy,

the imaginary parts of the complex electromagnetic and gravitational Ernst potentials, u = Im 1)
(the scalar magnetic potential) and xy = Im &£ (the twist potential) are defined up to an additive

constant by the dualizations ou = F P_lﬁ?jj (0;A, 4+ wdjv),
oix = —F2p_1e?;j8jw + 2(%8@"0 — ’Uaiu) :
Using these to evaluate the integrands 1 1
1
J, = W {—Ly, + wn, (0nx/2 — ®npu) + 0n(Apu)},
1

where for any function of two variables f(p,z) the quantity 0, f = f(0,2n4+1) — f(0,2,) |
variation between two ends z,.1 and z, of the rod n, while L,, = 2,411 — 2z, is rod’s length
related to the rescaled surface area of the Killing horizon I, = 4x;.A,;.

1 “n+1 1 Z<n+1 e _k;
A, = - jigd@/zn \/1922900|dz = 1 le"w|dz Ki = e "8

Zn
1s the constant Killing horizon surtace gravity.



Smarr mass formulas and the first law of black hole mechanics

Using this, we get M, =2Q,J, + 2k, A, + ©,Q),

valid for each Killing horizon, black hole event horizon or Misner string. Finally, adding together
these individual Smarr relations and splitting summation indices n in two sets h, s enumerating
black hole and string contributions respectively, we obtain the global Smarr relation for the

system: N-1
M = Z QQth + 2k Ap + (I)h,Qh + Z QQ Js + 26 A5 + @ Qs) ;
h=1 s=1

where the first sum relates to constituent black holes, and the second to defects.

The first law for such a system is (NUTs are included)
N-1
dM = Z OndJy + kpdAp + ®pdQp) + Z QdJs + rsdAs + DdQs)
h=1

where M is the total mass (sum of the horizon and strmg masses). It expresses the differential
of the total mass (energy) in terms of differentials of extensive (additive) quantities .J;, A;, Q;.

Misner strings (among other defects) enter the second sum. Their contribution is purely mechanical, though is put
in the form analogous to entropic terms in the first sum. No S-duality for magnetic and gravimagnetic charges



G.Clement and DG, Phys lett B 2023

The first law for NUTless dyonic multi-black holes

N N—-1
dM = (QudJy, + kpd Ay + ©,dQp) + > (VsdPs — \sdpus)
h=1 s=1

Contrary to naive expectations, the first law (4.8) for axisymmetric arrays of NUTless dyonic
black holes is not generically invariant under electric-magnetic duality. It is true that the
magnetic flux through the Dirac string .S,, connecting the two black holes H, and H,, i can be
thought of as the difference Ps, = Py, ., — Py, sothat

N N—-1
AM = 3" (ndJy + kndAp + PpdQp + ®pdPy) — > Asdps
h=1 s=1

where q)h = 2uh — Up—1 — Up+1 T A

the “potentials” @, thus formally defined do not characterize the black hole horizon H,, as they
depend in a non-local fashion on the values of the magnetic potential u on several horizons.



Rotating Kerr-Newman wormhole with NUT
This is rotating

Consider Kerr-Newman-NUT solution 2210.08913.pdf (arxiv.org) “almost” solution

of EM equations

A dr? sin2 @ with five free
2 2 2 2
ds® = _E(dt —adp)” + X% (K + db ) + - (Bdyp — adt) parameters:
f 22 A o =asin?0 — 2ncosd, B=r?+n?+d% (4P, m,n,a).
= —5(dt- wdp)? + % ~+ do* + 7 sin?0de®| . A — 12 — 9+ 62 — n? 4+ o2 Different sectors
S 8 aa =12+ (n+ acosh)’ in parameter space
- , — , ’ , correspond to BH,
J=A—-a"sin”0, wf=caA—afsin”0, naked singularities
i ! . or wormholes.
where e? = ¢? 4+ p?, with ¢ and p the electric and magnetic charges, and m, W

_ It has Dirac and
n and a are the mass, NUT and rotational parameters. Misner string

The outer root of the equation A = 0, 7, = m + vVm?2 +n? —a?2 —e?  singularities
defines the location of the event horizon, which exists and is non-degenerate
if m? +n? —a? —e? > 0, exists and is degenerate (extremal) if m? + n? —
a’ —e? = 0, and does not exist for a’+e>—m?—n?=05b%>0 Inthis overcharged case it is:

naked ring singularity at 7 = 0,acosf = n, if |n| < @  or is non-singular if |n| > a

in which case the radial variable r» extends to the whole real axis, leading to
a wormbhole topology with two spacelike asymptotics r = +00 and r = —o0.


https://arxiv.org/pdf/2210.08913.pdf

For the KNN wormhole the metric function

A(r) = (r — m)* + b

is always positive, so there is no horizon. The point » = m corresponds
to its minimal value Ay = b?. The metric function f(r,#) is also positive
definite for b > a. However, for a > b,

the Killing vector 0; becomes null on the boundary of the ergoregion r < r,
where

re = m + \/aQSiHQQ—bQ.
There is an ergosphere

This boundary ends on non-zero value of the polar angle but no superradiance!

T—0.>0>0,, 0. = arcsin (b> .

a

Thus the ergoregion r < r. is bounded by the cones 8§ = 6., 6 =1 — 0.. Its
maximal radius at § = 7/2 is

re:m—|—\/a281n26’—62.




Misner String violates Null Energy Condition

wormhole configurations requires violation of the null energy condition

R, k'K” >0 for some null vector field k(x) (g, k*k” =0,

How to extract distributional hidden sources?
N2 o
Stationary metric in Kaluza-Klein form ds®* = —F (dt — widaj?’) - F_lh?;jdazzda:j
. F . ) I
R! = _EZJka . _ ij—a' .
t 2\/E 2] T € \/E ju)k

/

2mnA
32

Xs(r) = / \/@(Rg)ik%d% =

| | +too \g2A2f3
b~ (de')? + A [(d$2)2 i (dw?’)ﬂ , w2 £2ne1;;0; Inudx’ jl> —8mn” /_ N g2 dr

/ Near a Misner string v = sinf = 0, we have : liia &2
9l(Rs); = F €0;0%(z)
h ~ dr® + A(du® + u?dy?), w ~ F2ndp.

Transforming to local coordinates x' = r, % = ucos ¢, > = usin ¢

u? = (22)? + (23)?). Accordingly,
(u = (2%)" + (°)7) where k' = A\3sin®, k" = eAAsin6,

2na 52(x) K =0, k¢ = \asin

22

T1=T12:F




Conclusions

Electrovacuum black holes (RN, KN) are “charges without charges”
Consequently Dirac and Misner strings are implied by flux conservation

Though electrically and magnetically charged black holes are S-symmetric
the corresponding first law are different because of Dirac strings

The same is true for gravimagnetic black holes (with NUTs)
Gravimagnetic charge can turn overcharged naked singularities into wormholes
Exotic matter sources are involved, violating NEC in the case of NUT wormholes

First law exhibits violation of S-duality in multicenter solutions
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