

Recent Heavy Flavour results from ATLAS

Adam Barton,

On behalf of ATLAS experiment

Outline

- Introduction
- J/ ψ and ψ (2S) production at high p_T at 13 TeV [ATLAS-CONF-2019-047]
- J/ψ production associated with W ± [JHEP 01 (2020) 095]
- B[±]c / B[±] production cross-section [Phys. Rev. D 104 (2021) 012010]
- Pentaquark search in $\Lambda_{b} \rightarrow J/\psi p K^{-}$ [ATLAS-CONF-2019-048]
- CP-Violation in $B_{s} \rightarrow J/\psi$ (μ + μ -) K + K [Eur. Phys. J. C 81 (2021) 342]
- Study of the $B_c \rightarrow J/\psi D_s$ and $B_c \rightarrow J/\psi D_s^*$ decays in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector [ATLAS-CONF-2021-046]
- Combination of the ATLAS, CMS and LHCb results on the B⁰s→µ⁺µ⁻ decays [ATLAS-CONF-2020-049]

Introduction

- ATLAS detects huge amount of B hadrons
- **Triggering** is a challenge as luminosity increases, most of Bphysics data selected by low-pT dimuon triggers:
- Resolution in m($\mu\mu$) : ~50 MeV at J/ ψ mass, ~150 MeV at Y(nS) masses ~10 μ m impact parameter resolution
- Time resolution ~60 fs after installation of IBL in Run 2 (30% improvement w.r.t. Run 1)

- Heavy quarkonia provide insight into QCD near the boundary of perturbative and non-perturbative regimes
- Inclusive cross section measurements are important for refining quarkonia production models
- Previous ATLAS measurements used low-threshold di-muon triggers, limiting p_T range to ~ 100 GeV → use single muon trigger with high threshold (50 GeV)
- We perform unbinned ML fit to mass and pseudo-proper decay time $\tau = m_{\mu\mu} L_{xy} / (p_T c)$, in bins of y and p_T .
- The double differential J/ ψ and ψ (2S) cross-sections for prompt and non-prompt production is measured

	p⊤ range, GeV	y range
J/ψ	60 <p <360<="" t="" td=""><td> y <2</td></p>	y <2
ψ(2S)	60 <p <140<="" t="" td=""><td> y <2</td></p>	y <2

FONLL = (Fixed Order + Next-to-Leading Logarithms)

J/ ψ and ψ (2S) production at high p_T

comparison to FONLL prediction* good agreement at low p^T at high p^T higher cross-sections are predicted

*FONLL Heavy Quark Production Matteo Cacciari, http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html, accessed: 2019-09-03

FONLL = (Fixed Order + Next-to-Leading Logarithms)

70 80 90 100

300

*p*_(μμ) [GeV]

200

comparison to FONLL prediction* good agreement though somewhat higher crosssections are predicted

Prompt J/ ψ cross-section at 13 TeV fit CMS and ATLAS results with ~(b+p_T)⁻ⁿ good agreement in the overlap region

non-prompt production fractions:

$$F_{\psi}^{\mathrm{NP}}(p_{\mathrm{T}}, y) = \frac{N_{\psi}^{\mathrm{NP}}}{N_{\psi}^{\mathrm{P}} + N_{\psi}^{\mathrm{NP}}}$$

We simply see a plateau at 70% which was hinted at with previous measurements Non-prompt Fraction

09

0.5F

0.4

0.3

0.2

0.0

[ATLAS-CONF-2015-030]

8

0.9F

0.8

0.5

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹

J/ψ production associated with $W^{\scriptscriptstyle\pm}$

- For understanding charmonium production mechanism in hadronic collisions
 - The relative contribution of Color Singlet (CS) and Color Octet (CO)
 - contributions from Single (SPS) and Double Parton Scattering (DPS)
 - can be **probed using** $\Delta \phi$ **distribution** between J/ ψ and W[±] DPS should be flat, SPS peaks at $\sim \pi$.
- The prompt-J/ ψ signal is extracted from fit to J/ ψ mass and pseudo-proper decay time
- $\Delta \phi$ measurement indicates presence of SPS
- in case of DPS, probability of producing J/ ψ by second scatter: P_{J/ ψ |W[±] = $\sigma_{J/\psi}/\sigma_{eff}$}
- σ_{eff} is unknown \rightarrow two choices from previous ATLAS measurements:
 - $\sigma_{eff} = 6.3 \pm 1.6$ stat ± 1.0 syst mb from prompt J/ ψ pair production
 - σ_{eff} = 15 ± 3stat +5-3 syst mb from W[±] + 2jets
- We see both values consistent with data at low $\Delta\phi$

J/ψ production associated with $W^{\scriptscriptstyle\pm}$

- We show the differential inclusive cross-section in 6 pT bins in the range: 8.5 < pT <150 GeV
- We compare to two theoretical predictions
 - differ in σ_{eff} values used for estimation of DPS
 - SPS contribution modelled by CO model for both
 - comparison suggests smaller σ_{eff}, but both values don't describe pT dependence
 - CS model not included

B_{c}^{\pm}/B_{c}^{\pm} production cross-section

- A unique probe for heavy quark dynamics
 - use similar decay mode for B_{t}^{t} and B_{t}^{t}
- fiducial volume: $p_T > 13 \text{ GeV}$, |y| < 2.3

$$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psiK^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{\text{reco}}(B_c^{\pm})}{N^{\text{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_c^{\pm})}$$

- double differential measurement in 2 bins of y and $p_{\scriptscriptstyle T}$
- The production ratio in fiducial region (horizontal line
 - $(0.34 \pm 0.04_{\text{stat}} \pm +0.06 0.02_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
 - Complements LHCb and CMS
 - no evident rapidity dependence
 - $B_{t_c}^{\pm}$ cross-section decreases faster with p_{τ} than B^{\pm} cross-section

Pentaquark search in $\Lambda^0_{\ b} \rightarrow J/\psi p K^-$

- 4 structures observed in J/ψp mass spectrum by LHCb.
 - interpreted as pentaquark states P_c(4312)⁺, P_c(4380)⁺, P_c(4440)⁺ and P_c(4457)⁺.
- ATLAS search uses 4.9 fb⁻¹ (7 TeV) and 20.9 fb⁻¹ (8 TeV) data.
 - − no PID → consider all $H_b \rightarrow J/\psi h_1 h_2$ ($h_{1,2} = p, K, \pi$) candidates
 - modelling these contributions with analytical matrix elements
 - suppressing background from Λ^* , K^* , f, $\phi \rightarrow m(K\pi) > 1.55$ GeV
 - performing sequence of iterative fits in Λ⁰_b signal region, B⁰ (J/ψπK) and B⁰_s (J/ψKK) control regions and in full range of selected dataset

signal region: (5.59, 5.65) GeV

Pentaquark search in $\Lambda^{0}_{\ b} \rightarrow J/\psi pK^{-}$

fit with 2 pentaquark hypothesis with spin parity of 3/2- (light) and 5/2+ (heavy)

fit with 4 pentaquark

hypothesis: masses, widths and relative yields of narrow states fixed to LHCb values

fit without pentaquarks

$\chi_2/n.d.f = 69.2/37$

Conclusions

- hypotheses with 2 and 4 pentaquarks consistent with data
- hypothesis without pentaquarks cannot be excluded

CP-Violation in $B^{0}_{s} \rightarrow J/\psi \phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$

- The CP-violating phase ϕ_s is sensitive to New Physics processes
- In SM, ϕ_s is related to the CKM matrix elements:
 - Estimated precisely as -0.03696 rad with small uncertainty.
- other BOs-BOs mixing quantities: width difference between BOs mass eigenstates $\Delta\Gamma_s = \Gamma_s^{H}-\Gamma_s^{L}$, average decay width $\Gamma_s = (\Gamma_s^{H}+\Gamma_s^{L})/2$.
- tag whether B meson contains b or b quark at time of production using opposite side tagging (by computing weighted sum of charge of tracks in cone ΔR around direction of either μ , e or b-tagged jet)
- Final state is admixture of CP-even(L=0,2) and CP-odd(L=1) states distinguished through time-dependent angular analysis
- 80.5 fb-1 (13 TeV) partial Run 2 data (2015-2017)
 - unbinned maximum likelihood (LH) fit to extract signal and S-wave parameters

CP-Violation in $B^{0}_{s} \rightarrow J/\psi \phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$

• fit returned two well-separated solutions for strong phases of CP-even and CP-odd final state configurations

- Main parameters are identical in both solutions
- ϕ_s and $\Delta\Gamma_s$ results consistent with updated SM
- ~ 3σ tension in Γ_s with current world average [PDG2020]
- A full run-2 paper is in progress

[_sd] ° 0.12 _____ ATLAS ----- Run1. 7 and 8 TeV. 19.2 fb √s = 7, 8, 13 TeV ----- 13 TeV, 80.5 fb⁻¹ Combined 19.2 + 80.5 fb⁻¹ 68% CL contours 0.1 0.08 0.06 -0.2 0.2 0 ر sd] [°]ال ATLAS

 ϕ [rad]

- Decays $B_{c} \rightarrow J/\Psi D^{*}_{s}$ can occur through b decay with c as spectator, or through annihilation diagram.
- The analysis seeks a more precise measurement of the branching fractions and polarization using full Run-2 data.
- Dataset 1: candidates in the events collected by the standard dimuon or three-muon triggers without requirements on additional ID track.
- Dataset 2: candidates collected only by the dedicated $B_{s} \rightarrow J/\psi \phi$ triggers but excluding the ones used in dataset 1.

New: Study of the $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

New: Study of the $B_c^+ \rightarrow J/\psi D_s^{(*)+}$: Result

$$\begin{split} R_{D_s^+/\pi^+} &= 2.76 \pm 0.33(\text{stat.}) \pm 0.29(\text{syst.}) \pm 0.16(\text{br.f.}) \\ R_{D_s^{*+}/\pi^+} &= 5.33 \pm 0.61(\text{stat.}) \pm 0.67(\text{syst.}) \pm 0.32(\text{br.f.}) \\ R_{D_s^{*+}/D_s^+} &= 1.93 \pm 0.24(\text{stat.}) \pm 0.10(\text{syst.}) \\ \Gamma_{\pm\pm}/\Gamma &= 0.70 \pm 0.10(\text{stat.}) \pm 0.04(\text{syst.}) \end{split}$$

- Measurements are consistent with LHCb.
- The precision of this measurement exceeds that of all previous studies.

ATLAS-CONF-2020-049

Combination of the ATLAS, CMS and LHCb results on the $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ decays

-- ATLAS

---CMS

--·LHCb

- ATLAS has a rich B-Physics program
- The statistical precision of many analyses can still be improved (data available)
- More papers coming
- ATLAS B-physics team is well prepared for Run3

Summary

Backups

Prompt

Non-prompt

[x1, x10 and x100 scaling applied to different rapidity ranges for visual clarity]

Prompt

Non-prompt

[x1, x10 and x100 scaling applied to different rapidity ranges for visual clarity]