

Search for Resonance in photon+jet final state using CMS Data

Jyoti Babbar

Panjab University, Chandigarh, INDIA on behalf of CMS Collaboration

20th Lomonosov Conference on Elementary Particle Physics August 19th -25th, 2021

Introduction

- Standard Model gives an extraordinary insight to fundamental nature of matter, but yet can not explain everything in the universe
- Beyond Standard Model searches : why only three generations of quarks and leptons??
 - Models predict the quarks and leptons are not fundamental and there is an underlying structure for the fermions families.
- Outstanding enigma of particle physics: the hierarchy problem, i.e. the large difference between the scale of electroweak and the Planck scale
 - The existence of extra dimensions can explain such large difference. Standard Model confined to a 3-brane and only gravity propagates in extra dimensions

Previous Results

A search for new resonances decaying to photon+jet state with luminosity 137fb⁻¹ (2016-2018)

- More data leads to more potential for new signals
- New techniques implemented

Resonance mass [TeV

Signal Modelling

Composite models

- Composite models predicts the substructure of the quarks (light flavor quarks q* and heavy flavor quarks b*)
 - The search for excited light and heavy quarks signals with coupling multipliers to Standard Model f = 1.0, 0.5 and 0.1 is performed

Quantum Black Hole models

- The Quantum Black Holes (QBH) which are the quantum analogs of the black holes can be produced at the LHC. Due to radiation and experimental effects it appears as a resonance.
- QBHs are non thermal objects, expected to decay predominantly to pairs of particles
- Two well known models of QBH are studied :
 - ADD (with n=6 extra dimensions) and
 - RS1 (with n=1 extra dimension)

CMS Detector

- Photons energy are calibrated in the electromagnetic calorimeter of CMS detector with no tracks associated with it.
- Jets are reconstructed in Hadron Calorimeter of the detector
 - Jets with ΔR < 1.1 between them are merged together to form wide jets to account for the final state radiation.

SM Backgrounds

 The major background to the study is the standard model photon+jet background, with small contribution from QCD and electroweak background.

q,b

- To reduce the background and improve the signal efficiency, selections are applied:
 - A high pT photon in the barrel region of the detector $(|\eta|^{photon} < 1.44)$
 - A high pT wide-jet in the central region of the detector
 - For resonance to exist, photon and jet produced via hard scattering would decay mostly back to back

- The multi-jet backgrounds also contributes when π⁰ decays to two overlapping photons
 - To reduce the QCD background further, Δη(photon, jet) < 1.5 is imposed.

photon -

photon

photon

Analysis Strategy

- The search for resonance is performed by looking for a bump in the invariant mass distribution of the final state particles
- Background estimation is done from data
- MC is used for optimizing the selections and validation with data
- Distribution after selection
- Data/Background agreement for different year (2016-2018) distributions
- Similar distribution with 35.8fb⁻¹ and 41.7 fb⁻¹ is observed
- Data is consistent with SM expectations

Jyoti Babbar (CMS)

Background Modelling

 ${\scriptstyle \odot}$ QBH (ADD $M_{\gamma^+ jet}~=$ 3TeV and RS1 $M_{\gamma^+ jet}~=$ 1TeV)

and MC simulations are used as proxy for Data

CMS

- The major systematics contribution comes from the uncertainties on the parameters in the background functional form.
- Bias study is also performed to account for the possible bias due to the choice of the functional form chosen
 - The systematic due to bias is negligible, compared to the statistical uncertainty of the fit of invariant mass distribution
- Other Signal uncertainty dominated by photon ID inefficiency (10%) and b quark tagging (14%)

CMS

Results

• The expected limits with MC are calculated.

• Expected Upper limits on cross section is measured and :

- q* is excluded up to 6.0 TeV
- b* is excluded up to 2.3 TeV

• ADD is excluded up to 7.6 TeV

Summary

- The search for excited state of light and heavy flavor of quarks is performed using CMS data
- The possibility of Quantum Black hole at the LHC and decaying to two particle state is also considered.
- The expected exclusion limits on signals are calculated, since the Data is blinded till the selections are optimized from simulations.

Additional Material

Efficiency Tables

 The efficiency of the signals after the selections applied normalized to 2016 data, 2017 data and 2018 data, corresponding to the luminosity 35.8 fb⁻¹, 41.7 fb⁻¹ and 58.7 fb⁻¹ respectively.

Systematics table

Source	Туре	Relative Size(%)	Signal Model
Luminosity	Normalization	1.6	q*/b*/QBH
Jet energy scale	Shape	~ 1.0	q*/b*/QBH
	Normalization	< 0.002	q*/b*/QBH
Jet energy resolution	Shape	0.6-1.9	q*/b*/QBH
Photon energy scale	shape	~ 1.0	q*/b*/QBH
	Normalization	< 0.002	q*/b*/QBH
Photon energy resolution	Shape	0.4-1.2	q*/b*/QBH
Pileup	Normaliation	0.1	q*/b*/QBH
High pT Photon ID inefficiency	Normalization	~ 10.0	q*/b*/QBH
HLT Trigger inefficiency	Normalization	5.0	q*/b*/QBH
Signal shape interpolation	Shape	<1.0	q*/b*/QBH
b-tag SF uncertainty	Shape	0.2-3.0	b*
	Normalization	7.9-14.3	b*

Table 1: Effect of various systematic uncertainties on signal.

Signal, Data and Background

Data : CMS full Runll data corresponding to luminosity 137.4 fb-1

Background : Standard Model photon+jet background is the major background, with small contribution from QCD and Electroweak processes.

Signals :

- q* and b* stimulated with Pythia8 generator at the leading order (LO)
- QBH: generated with QBHv3.0 generator

Event Selection

The search for resonance is performed by looking for a bump in the invariant mass distribution of the final state particles

Photons :

- Photon pT > 240 GeV
- $|\eta|^{\gamma} < 1.44$

Jets :

- Jet pT > 170 GeV
- $|\eta|^{jet} < 2.4$
- Heavy flavor quarks (b*) passes the neural based discriminator

Photon + jet selection :

- $\Delta R(\text{photon, jet}) > 1.1$
- $\Delta\eta$ (photon, jet) < 1.5
- Invariant Mass(photon, jet) > 761 GeV
 Jyoti Babbar (CMS)

