

Shufang Su • U. of Arizona

Lomonosov Conference August 25, 2021 H. Li, SS, W. Su, J. Yang, 2010.09782

S. Su

- Higgs precision measurements
- Global fit framework
- Explore MSSM parameter space
- Somplementarity with direct search
- Sonclusion

Higgs Precision Measurements

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

S. Su

collider	CEPC	FCC-ee	ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$			
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	$200 {\rm ~fb}^{-1}$		4 ab^{-1}			
production	Zh	Zh	Zh	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-	
decay		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-	
$h \to gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	_	
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	_	
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-	
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-	

S. Su CEPC-CDR, FCC Physics Opportunities, ILC 1903.01629.

5

collider	CEPC	FCC-ee		ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$				
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200 fb^{-1}		4 ab^{-1}				
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$		
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-		
decay			$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%		
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-		
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-		
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-		
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-		
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-		
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-		
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-		
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	_	_	-	-	-		

collider	CEPC	FCC-ee	ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$			
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200 fb^{-1}		4 ab^{-1}			
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	_	1.06	-	-	
decay			$\Delta(\sigma$ ·	$\cdot BR)/(\sigma$	$\cdot \cdot BR)$				
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-	
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-	
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-	
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-	
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-	

collider	CEPC	FCC-ee		ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$				
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	$200 \ {\rm fb}^{-1}$		4 ab^{-1}				
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$ u \overline{\nu} h $	$t\bar{t}h$		
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-		
decay			$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%		
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-		
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-		
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	(0.85%)	-		
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-		
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-		
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-		
$h \rightarrow \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-		
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-		

collider	CEPC	FCC-ee	ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$			
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200 fb^{-1}		4 ab^{-1}			
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-	
decay			$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$						
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	(0.25%)	9.9%	
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-	
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	(0.85%)	_	
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-	
$h \rightarrow ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-	
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \rightarrow \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	_	-	-	

• Type-II Two Higgs Doublet Model

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ \tan \beta = v_{u}/v_{d}$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad \begin{array}{l} A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses CP-even Higgses: hº, Hº , CP-odd Higgs: Aº, Charged Higgses: H±

• h⁰/H⁰ VV coupling
$$g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta - \alpha) = 0$, h⁰ is the SM Higgs with SM couplings. S. Su 6

MSSM

$$\mathcal{M}_{\text{Higgs}} = \frac{\sin 2\beta}{2} \begin{pmatrix} \cot\beta \ M_Z^2 + \tan\beta \ M_A^2 \ -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 \ \tan\beta \ M_Z^2 + \cot\beta \ M_A^2 \end{pmatrix} + \begin{pmatrix} \Delta_{11} \ \Delta_{12} \\ \Delta_{12} \ \Delta_{22} \end{pmatrix}$$

MSSM parameters: m_A, tanβ, M_{SUSY}, X_t, μ=500 GeV, others less important (large m_{sb}, m_{gluino},...)

• Higgs mass (full 1-loop, leading 2-loop, some 3 & 4 loop) $M_h^2 = m_h^{2,\text{tree}} + \frac{3}{2} \frac{G_F \sqrt{2}}{\pi^2} \overline{m}_t^4 \left\{ -\ln\left(\frac{\overline{m}_t^2}{M_S^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{1}{12} \frac{X_t^2}{M_S^2}\right) \right\}$ ~ 3 GeV uncertainties (higher loops, m_t,...) show effect of Δm_h : 3 GeV, 2 GeV, 1 GeV

MSSM

$$\mathcal{M}_{\text{Higgs}} = \frac{\sin 2\beta}{2} \begin{pmatrix} \cot\beta \ M_Z^2 + \tan\beta \ M_A^2 \ -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 \ \tan\beta \ M_Z^2 + \cot\beta \ M_A^2 \end{pmatrix} + \begin{pmatrix} \Delta_{11} \ \Delta_{12} \\ \Delta_{12} \ \Delta_{22} \end{pmatrix}$$

MSSM parameters: m_A, tanβ, M_{SUSY}, X_t, μ=500 GeV, others less important (large m_{sb}, m_{gluino},...)

• Higgs mass (full 1-loop, leading 2-loop, some 3 & 4 loop) $M_h^2 = m_h^{2,\text{tree}} + \frac{3}{2} \frac{G_F \sqrt{2}}{\pi^2} \overline{m}_t^4 \left\{ -\ln\left(\frac{\overline{m}_t^2}{M_S^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{1}{12} \frac{X_t^2}{M_S^2}\right) \right\}$ ~ 3 GeV uncertainties (higher loops, m_t,...) show effect of Δm_h : 3 GeV, 2 GeV, 1 GeV

 \circ gauge and Yukawa couplings (α_{eff})

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha_{eff} & \sin \alpha_{eff} \\ -\sin \alpha_{eff} & \cos \alpha_{eff} \end{pmatrix} \begin{pmatrix} \operatorname{Re}H_u^0 - v_u \\ \operatorname{Re}H_d^0 - v_d \end{pmatrix}$$

hZZ: sin(β -α_{eff}); huu: cos(α _{eff})/sin(β), hdd, hll: -sin(α _{eff})/cos(β); hbb: + large vertex cor.

$$\kappa_b = -\frac{\sin \alpha_{eff}}{\cos \beta} \tilde{\kappa}_h^b, \quad \tilde{\kappa}_h^b = \frac{1}{1 + \Delta m_b} \left(1 - \Delta m_b \frac{1}{\tan \alpha_{eff} \tan \beta} \right)$$

hgg and hγγ(same order as SM)

$$\chi_{total}^{2} = \chi_{m_{h}}^{2} + \chi_{\mu}^{2} = \frac{(m_{h}^{\text{MSSM}} - m_{h}^{\text{obs}})^{2}}{(\Delta m_{h})^{2}} + \sum_{i=f,V..} \frac{(\mu_{i}^{\text{MSSM}} - \mu_{i}^{\text{obs}})^{2}}{(\Delta \mu_{i})^{2}}$$

• earlier work: h→gg, h→yy

Fan, Reece, Wang, 1402.3107; Fan and Reece, 1401.7671, Drozd, Ellis, Quevillon and You, 1504.02409, 1512.03003

- FeynHiggs: m_h , α_{eff} , Δm_b
- assume no deviation, 95% C.L. region

 $m_A \in (200, 3000) \text{ GeV}, \tan \beta \in (1, 50),$ $X_t \in (-5000, 5000) \text{ GeV}, m_{\text{SUSY}} \in (200, 3000) \text{ GeV},$

msusy vs. Xt

ma vs. Msusy

m_A vs. tanβ

CEPC/FCCee/ILC

Conclusion

- Higgs factory reach impressive precision: mass + couplings
- χ^{2}_{mh} dominate for small tan β
- $\chi^2_{\text{couplings}}$ (hbb): small to moderate m_A
- hgg,hγγ: constrain M_{SUSY} for tanβ > 7 (max-mixing)
- m_A: sensitive to Higgs couplings
- tanβ, M_{SUSY}, X_t,: sensitive to Higgs mass
- Msusy depends sensitively on Δmh
- CEPC/FCC-ee/ILC: reach comparable
- complementary to direct search @ pp