=! "il LABORATORIO DE INSTRUMENTACAO
— ,4! € FSICA EXPERIMENTAL DE PARTICULAS
L 1 P 4 5

Deep Learning Models in searches for

new physics at colliders

Lomonosov Conference
25th August 2021

Miguel Crispim Romao
mcromao@!/ip.pt



One of the main
goals of the LHC
is to look for
New Physics

Choose BSM signal you are
looking for

Study favourable kinematic
region and final state topology
Collect the data in such regime
Perform statistical tests on

the data on the hypothesis of
BSM being present
Profit (eventually)




Searches for New Physics at Modern Colliders
The Workflow Challenges

e Aneventis characterised by a collection of kinematic variables (jet and
lepton masses, pT, eta, phi, multiplicities, b-tags, etc) => Multivariate
Analysis

o What are the best discriminating variables? => Use a single Machine
Learning discriminator! (Neural Network or Gradient Boosted Trees)

o What if the signal region on these variables change as we change the
parameters of New Physics?

e An explicit New Physics hypothesis is tested

o What if another New Physics signal is presented instead?

o What if we are forgetting to consider a realised New Physics case (for
example something more exotic that is not covered in standard
analyses)



Transferability
of Deep Learning
Models in
Searches for
New Physics at
Colliders

MCR, N. F. Castro, R. Pedro,
T. Vale

Phys.Rev.D 101 (2020) 3,
035042 [1912.04220]

How does an NN classifier,
trained to separate a specific
signal from background,
behave when shown a new
signal?

How does this impact upper
limits on New Physics?

Focused on three classes of
signals:
FCNC
VLQ from SM production
VLQ from Heavy Gluon
production




Transferability of Deep Learning Models

Analogy
Jungle is the Background (SM What happens if instead of
events) and we want to find monkeys there is another animal in

monkeys (a BSM candidate)
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Would an NN still find the signal?



Transferability of Deep Learning Models
Methodology

e For each signal train a supervised DNN classifier

e Use each trained DNN to predict on every combination
signal-background

e Assess how discrimination deteriorates as we present a different signal

to each DNN through upper limits on expected cross-section



‘ Transferability of Deep Learning Models
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Transferability of Deep Learning Models
Upper Limits
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Could we not just
focus on the jungle?

Since we don't know
what BSM candidate is
realised in nature, it
seems it would be
better if we could
develop a way of
identifying any type of
non SM phenomena




Unsupervised Methods for New Physics Searches

e Growing interest in Unsupervised approaches to isolate New Physics
from SM Background
e Anomaly Detection ML algorithms are finding their way into HEP to
help this out
o 1805.02664, 1808.08992, 1811.10276, 1902.02634,

1903.02032, ...
e A comprehensive live review of ML in HEP curated by CERN's IML
WorkGroup: https:/github.com/iml-wg/HEPML-LivingReview



Finding New Physics
without learning
about it: Anomaly
Detection as a tool
for Searches at

Colliders

MCR, N. F. Castro, R. Pedro

Eur.Phys.).C81(2021) 1, 27
[2006.05432]

We kept the same signals
o FCNC
o VLQ from SM production
o VLQ from Heavy Gluon
production
We compared four AD
algorithms
o Auto-Encoder
o Deep-5VDD
o Isolation Forest
o Histogram Based



Reconstruction

Encoder

Finding New Physics without learning about it

Auto

Inputs

X?




Finding New Physics without learning about it
Auto-Encoder

e The Network is trained by minimising the reconstruction error
N

L= %Z 25 — AE(z;)]?
1=1
e In principle, events that are easier to reconstruct are the most common
(or at least carry the most common relations between the variables)
e Reconstruction error of an event can be a measure of how rare

(@anomalous) it is => BSM events should have higher reconstruction

error



Finding New Physics without learning about it
Deep-SVDD

Inputs

Embedding




Finding New Physics without learning about it
Deep-SVDD

e Before any training, the NN is just a map from the input space to some
embedding space
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e Inthis space we can find a “centre of mass’, ¢, of the points



Finding New Physics without learning about it

Deep-SVDD

e The Network is trained by minimising the distance to

the centre of mass
! N
L= NZ ¢ — NN(z,)|”
1=1

e The bulk of the distribution will be easier to bring to
the centre, the rarer events will be further away
e The distance to c becomes then a natural

interpretation for outlyingness of an event
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Train only on
Standard Model

This way we are learning
what a jungle looks like
and hopefully we will be
able to find any animal!

Are different algorithms
correlated?

Are they focusing on the
same characteristics?




Finding New Physics without learning about it
Results 1: Are all AD algorithms created equally?
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Finding New Physics without learning about it
Results 2: Can they find animals?
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Finding New Physics without learning about it
Results 3: Can we search for New Physics?
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Ongoing and future work




Ongoing and Future Work

e Systematic study on how we can maximise the sensitivity of Anomaly
Detection methods

e Asensitive analysis for a BSM model which will include an
unsupervised analysis alongside the supervised one

e Still alot to understand on how and when each Anomaly Detection
methods works best for different classes of BSM signals and
topologies

e Need arobust “blind” statistical test to use on the new discriminat
provided by the Anomaly Detection methods



Conclusions




Conclusions

e NN provide very versatile solutions for generic searches
o Supervised NN classifiers are able to find other signals
o Unsupervised architectures provide at most an order of magnitude
of degradation in sensitivity against supervised
e Unsupervised methods are getting a lot of attention and interest in the
community and can provide a BSM independent solution to search for
NP
e Ongoing and future work:
o Motivate phenomenologist to include unsupervised sensitivity
analyses of their models
o Systematic studies on how to confidently deploy these methods in
production/experiment
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Transferability of Deep Learning Models

The BaCkground Now available on Zenodo!
https://zenodo.org/record/5126747

e A SM cocktail sample was produced in MadGraph5+Pythia8+Delphes
o 8M Z+], 3M ttbar, 1.5M per diboson sample
e Targeted processes with dilepton final state, at least one b, and HT >
500 GeV
e To guarantee statistics at the tails of the distributions we applied event
filter at parton level in pT slices
e The events are represented by variables from the reconstructed objects:
o (n, @, pT, m)for 5 leading jets and large-radius jets
o N-subjetiness of the leading large-radius jet (t, with N =1, 2, .., 5)
o (n, @, pT) of the 2 leading electrons and muons
o Multiplicites, (ET, @) of the missing transverse energy (MET)



Transferability of Deep Learning Models

The Slgnals Now available on Zenodo!
https://zenodo.org/record/5126747

e 7 samples of BSM signals over three classes
e FCNCinteraction in single top-quark production
e \/ector-Like T quarks produced via SM gluon with three different masses

o 1.0TeV
o 1.2TeV
o 1.4TeV

e \/ector-Like T quarks produced via BSM heavy (3TeV) gluon with three
different masses
o 1.0TeV
o 1.2TeV
o 1.4 TeV



Finding New Physics without learning about it

Results 0: When they see new jungle
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Finding New Physics without learning about it
Isolation Forest

e Recursively partition the data with

1 ® ‘.---..: ':‘9 & .
random cuts " PRy SOV
. .o o.‘ Q?; 7: ..0
e These cuts can be represented as a . A s

tree

e Rare events will be easier to isolate
e Anomaly score given by the inverse T <\>
of how many nodes it took to / N

Difficult

ISO | ate To Isolate




Finding New Physics without learning about it

Common

/

Histogram Based

e (ompute histograms for all
variables

e Rare events will more often be in
bins of smaller height

e Anomaly score given by the sum of
the Log of the heights of each bin

an event occupies

x1



Finding New Physics without learning about it

Sanitised Features
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Backups
AD outliers are data outliers
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Backups
AD mus
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Finding New Physics without learning about it
Results 4: Can we search for New Physics?

Supervised DNN

peep svoD .

iForest -

Full Features

Model

Supervised DNN -

Deep SVDD -}

HBOS -

Sanitised Features

iForest -

Wj/o HG 1.2 Tevn

HG 1.0 TeV

2}
Q
=
o



