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Searching for DM collisions
Direct Detection

Direct Detection

SI interaction give much stronger bounds that SD ones

G. Busoni (MPI for Nuclear Physics) Capture of Dark Matter in Compact Stars Lomonosov 2021, 25 Aug 2021 4 / 28



Searching for DM collisions
Direct Detection

Constraints depend strongly on interaction type
Strong target dependence
Some operators are suppressed by kinematics
(momentum/velocity suppressed)
Recoil energy is small, nonrelativistic kinematics
Experimental detectors have recoil energy thresholds
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Searching for DM collisions
DM Capture in the Sun

DM Capture in Stars

DM can be captured and
accumulate in Stars
Dark matter scatters, loses
energy, becomes
gravitationally bound to star
Accumulates in centre of Sun
Can potentially annihilate at
the center
At equilibrium
Capture=Annihilation
Probes same observables as
DD
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Searching for DM collisions
DM Capture in the Sun

SI: DD wins
SD: DM in Sun wins
DM in Sun requires some few
more assumptions, like that it
annihilates, and the
annihilation channel

Some other ways to infer indirectly DM presence in the Sun: modified
energy transport (see 1411.6626 , 1703.07784)
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Searching for DM collisions
DM Capture in NS

Very large density means very
efficient capture
Whole DM flux can be
captured already for
σ ∼ 10−45cm2
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Searching for DM collisions
DM Capture in NS

Possible observable signals

NS to BH collapse (more likely for bosonic DM)
Gravitational waves: DM increases tidal deformability
(1803.03266)
Kinetic Heating (M. Baryakhtar et al. PRL 119, 131801 (2017)
arXiv:1704.01577)
Kinetic + Annihilation heating (Bramante, Delgardo and Martin
1704.01577)
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Searching for DM collisions
DM Capture in NS

NS temperature evolution

NS have no know large heating sources
Lose energy by neutrino and photon emission
Neutrino dominates early stages of NS life, photon the late stages
In absence of other heating sources, one expects T ∼ 1000K after
10Myr and T ∼ 100K after 1Gyr

Kinetic heating: sets an equilibrium temperature of T ∼ 1700K if
whole DM flux is captured
Kin+Ann heating: equilibrium temperature is raised to T ∼ 2400K
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Searching for DM collisions
Advantages of NS

High capture probability
DM particles accelerated to O(0.5)c means no momentum/velocity
suppression
Cross section of σth = 10−45cm2 enough to reach maximum
capture
No threshold recoil energy
Similar sensitivity for SI and SD interaction
Similar sensitivity for momentum/velocity suppressed interactions
comparing to unsuppressed ones
Observation of old cold NS of temperature T < Teq:

σ ≤ σth
(
T

Teq

)4

(1)
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From capture in the Sun to NS and WD
Key differences

DM Capture in the Sun formalism developed by Gould in the ’80
We adapted this formalism to NS

Sun/Gould+Extensions NS/Our
Newtonian gravity GR

Sun structure from Standard Solar Model NS structure from EOS
Non-relativistic kinematics Relativistic kinematics

Atomic Nuclei Targets Baryon and Lepton targets
Non-relativistic matrix element Relativistic matrix element

MB distribution for targets FD distribution for targets
Capture probability 6= 1 Capture probability = 1∗

Star opacity Star Opacity
MS requires MC approach MS can be treated analytically

Targets have FF Targets have FF
Fixed Target mass Density-dependent Target mass

∗ for some masses
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From capture in the Sun to NS and WD
Key differences

Our Papers

2004.14888 Basics of NS formalism, including GR, EOS,
relativistic kinematics/matrix elements/interaction rates, Pauli
Blocking effects, Star opacity, Multiple Scattering, for Neutron
targets
2010.13257 Extension to lepton targets, interaction rates
generalised for all Dim 6 EFT operators
2012.08918 Baryon Targets have structure and cannot be
approximated by free gas
2108.02525 Full treatment of baryonic targets, including the above
effects
2104.14367 Application of formalism to WD (electrons are fully
degenerate)
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From capture in the Sun to NS and WD
Leptons: highlights and results

Very degenerate and
relativistic target due to their
low mass
Relativistic treatment is very
important for these targets
Muon targets: also check next
talk about them
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From capture in the Sun to NS and WD
Leptons: highlights and results
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From capture in the Sun to NS and WD
Leptons: highlights and results
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From capture in the Sun to NS and WD
Baryons: highlights and results

Baryons are composite
particles
Strong force mean field
effects require
treatment beyond free
Fermi gas
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From capture in the Sun to NS and WD
Baryons: highlights and results
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From capture in the Sun to NS and WD
Baryons: highlights and results
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From capture in the Sun to NS and WD
Baryons: highlights and results
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Conclusions
Summary

Neutron Stars: cosmic laboratory to probe DM scattering
interactions
Completely different kinematic regime to direct detection
experiments
High energy scattering washes away momentum suppression
Higher reach on inelastic scattering [1807.02840]
Can probe a very large mass range
Very sensitive for all interactions, including
momentum-suppressed and leptons
Current coolest NS of O(104)K
Prospects for observation in the coming decade
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